Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting.
https://simfit.org.uk https://simfit.silverfrost.com

The great importance of the t distribution in data analysis lies in the existence of numerous tests based upon it, such as the 1 -sample t, unpaired t, and paired t, as well as the use in calculating confidence intervals.

1 Definitions

Consider two independent random variables, Z which has a normal distribution with $\mu=0$, $\sigma^{2}=1$, and C which has a chi-square distribution with k degrees of freedom. Then the ratio

$$
t_{k}=\frac{Z}{\sqrt{C / k}}
$$

is described as a t variable with k degrees of freedom. It should be noted incidentally that t_{k}^{2} is distributed as $F(1, k)$.

A special case arises when analyzing a sample of size n from a normal distribution with population mean μ and population variance σ^{2}, because the sample mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

is normally distributed with mean μ and variance σ^{2} / n, while $n S^{2} / \sigma^{2}$ using

$$
S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

has a χ^{2} distribution with $n-1$ degrees of freedom. Hence the statistic

$$
t_{n-1}=\frac{\bar{x}-\mu}{S / \sqrt{n-1}}
$$

has a t distribution with $n-1$ degrees of freedom. Note that this t variable only has one unknown parameter, the population mean μ.

2 Simfit program ttest

Choose [A/Z] from the main SimFIT menu and open program ttest when the following options will be available.

```
Input: N, number of degrees of freedom
Input: t, calculate pdf(t)
Input: t, calculate cdf(t)
Input: alpha, calculate t inverse
Input: data, 1-sample t test
Input: data, 2-sample unpaired t test
Input: data, 2-sample paired t test
Input: matrix, groups across rows t test
Power and sample size
Non-central t distribution.
```


3 Degrees of freedom

An important use of the t distribution is when calculating confidence limits, for instance with a sample mean, or parameter estimate. The main thing to realize in such circumstances is that, although the mean value for t_{n} is zero irrespective of n, the variance is heavily dependent on n. This is why the confidence limits shrink as the sample size increases. Actually the t_{n} distribution is asymptotic to a standardized normal distribution as n increases, as shown by the next graph created from ttest.

Note how the area under the tails decreases rapidly as n increases from 2 to 6 but less slowly
thereafter. A more detailed inspection of this will be clear from this table copied from the ttest results log file for a 95% confidence interval.

```
P(t =< 4.303E+00) = 0.975 *** P(t >= 4.303E+00) = 0.025, N = 2
P(t =< 2.776E+00) = 0.975 *** P(t >= 2.776E+00) = 0.025, N = 4
P(t =< 2.447E+00) = 0.975 *** P(t >= 2.447E+00) = 0.025, N = 6
P(t =< 2.306E+00) = 0.975 *** P(t >= 2.306E+00) = 0.025,N = 8
P(t =< 2.228E+00) = 0.975 *** P(t >= 2.228E+00) = 0.025, N = 10
```


4 Confidence range for the sample mean

Given \bar{x} and S^{2} from a sample of size n, then a symmetrical $100(1-\alpha) \%$ confidence range for the population mean μ can be constructed using the upper tail critical value $t_{\alpha / 2, n-1}$. We have that

$$
P\left(\frac{\bar{x}-\mu}{S / \sqrt{n-1}} \geq t_{\alpha / 2, n-1}\right)=\alpha / 2
$$

and

$$
P\left(\frac{\bar{x}-\mu}{S / \sqrt{n-1}} \leq-t_{\alpha / 2, n-1}\right)=\alpha / 2,
$$

so that

$$
P\left(\bar{x}-t_{\alpha / 2, n-1} S / \sqrt{n-1} \leq \mu \leq \bar{x}+t_{\alpha / 2, n-1} S / \sqrt{n-1}\right)=1-\alpha .
$$

Alternatively, note that it often causes confusion because an unbiased estimate of the population variance is not S^{2} but the sample variance

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2},
$$

so that an equivalent expression for t_{n-1} would then be

$$
t_{n-1}=\frac{\bar{x}-\mu}{s / \sqrt{n}},
$$

whereupon

$$
P\left(\bar{x}-t_{\alpha / 2, n-1} s / \sqrt{n} \leq \mu \leq \bar{x}+t_{\alpha / 2, n-1} s / \sqrt{n}\right)=1-\alpha .
$$

using s^{2} instead of S^{2}.
We see from the above table that the multipliers of the sample standard error required for a 95% confidence interval with sample sizes of $n=3,5,7,9$, and 11 would be 4.303, 2.776, 2.447, 2.306, and 2.228. Clearly, using the sample mean plus or minus twice the standard error as an approximate 95% confidence range will always underestimate the actual 95% confidence range unless the sample size exceeds 10 , say.

