Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting.
http://www.simfit.org.uk

Symmetric eigenvalue problems of the form $A x=\lambda B x$ can be solved uniquely if A and B are symmetric and B is positive definite, as long as appropriate scaling conventions are understood.

From the $\operatorname{SimF}_{\text {I }}$ T main menu choose [Statistics] then [Numerical analysis] and open the procedure to solve symmetric eigenvalue problems. From this control you are given the options to solve any of the following three problems.

$$
\begin{aligned}
A x & =\lambda B x \\
A B x & =\lambda x \\
B A x & =\lambda x
\end{aligned}
$$

The $\operatorname{SimF}_{\mathrm{I}} \mathrm{T}$ default test files are matrix. tf 4 containing matrix A, and matrix. tf 3 containing matrix B as now displayed.

Matrix A			
0.24	0.39	0.42	-0.16
0.39	-0.11	0.79	0.63
0.42	0.79	-0.25	0.48
-0.16	0.63	0.48	-0.03
Matrix B			
4.16	-3.12	0.56	-0.10
-3.12	5.03	-0.83	1.09
0.56	-0.83	0.76	0.34
-0.10	1.09	0.34	1.18

The results from analyzing the standard problem $A x=\lambda B x$ are then as follows.

-2.2254476E+00			
-4.5475588E-01			
$1.0007648 \mathrm{E}-01$			
$1.1270387 \mathrm{E}+00$			
Eigenvectors by column ...Case: $A x=\lambda B x$			
-6.9005765E-02	$3.0795498 \mathrm{E}-01$	-4.4694499E-01	-5.5278790E-01
-5.7401486E-01	$5.3285741 \mathrm{E}-01$	-3.7084023E-02	-6.7660179E-01
-1.5427579E+00	-3.4964452E-01	$5.0476980 \mathrm{E}-02$	-9.2759211E-01
$1.4004070 \mathrm{E}+00$	-6.2110938E-01	$4.7425180 \mathrm{E}-01$	$2.5095480 \mathrm{E}-01$

It should be noted that the eigenvectors are the columns of a matrix X that is normalized so that

$$
\begin{aligned}
X^{T} B X & =I, \text { for } A x=\lambda B x, \text { and } A B x=\lambda x, \\
X^{T} B^{-1} X & =I, \text { for } B A x=\lambda x .
\end{aligned}
$$

where I is the identity matrix.
Warnings will be issued if there is a clash of dimensions, or A and B are not symmetric, or B is not positive definite.

