

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. http://www.simfit.org.uk

Symmetric eigenvalue problems of the form $Ax = \lambda Bx$ can be solved uniquely if A and B are symmetric and B is positive definite, as long as appropriate scaling conventions are understood.

From the $SimF_IT$ main menu choose [Statistics] then [Numerical analysis] and open the procedure to solve symmetric eigenvalue problems. From this control you are given the options to solve any of the following three problems.

 $Ax = \lambda Bx$ $ABx = \lambda x$ $BAx = \lambda x$

The SIMF_IT default test files are matrix.tf4 containing matrix A, and matrix.tf3 containing matrix B as now displayed.

Matrix	Matrix A				
0.24	0.39	0.42	-0.16		
0.39	-0.11	0.79	0.63		
0.42	0.79	-0.25	0.48		
-0.16	0.63	0.48	-0.03		
Matrix	В				
Matrix 4.16	B -3.12	0.56	-0.10		
	-	0.56 -0.83	-0.10 1.09		
4.16	-3.12				
4.16 -3.12	-3.12 5.03	-0.83	1.09		

The results from analyzing the standard problem $Ax = \lambda Bx$ are then as follows.

EigenvaluesCase: $Ax = \lambda Bx$						
-2.2254476E+00						
-4.5475588E-01						
1.0007648E-01						
1.1270387E+00						
Eigenvectors by columnCase: $Ax = \lambda Bx$						
-6.9005765E-02	3.0795498E-01	-4.4694499E-01	-5.5278790E-01			
-5.7401486E-01	5.3285741E-01	-3.7084023E-02	-6.7660179E-01			
-1.5427579E+00	-3.4964452E-01	5.0476980E-02	-9.2759211E-01			

It should be noted that the eigenvectors are the columns of a matrix X that is normalized so that

 $X^T B X = I$, for $Ax = \lambda Bx$, and $ABx = \lambda x$, $X^T B^{-1}X = I$, for $BAx = \lambda x$.

1.4004070E+00 -6.2110938E-01 4.7425180E-01 2.5095480E-01

where *I* is the identity matrix.

Warnings will be issued if there is a clash of dimensions, or A and B are not symmetric, or B is not positive definite.