Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting.
http://www.simfit.org.uk

Overdetermined linear equations of the form $A x=b$, where the number of rows of matrix A exceeds the number of columns, can often be solved by optimization techniques, although solutions may not be unique.

Such a linear system consisting of a m by n matrix A where $m>n$, and a m by 1 vector b as in $A x=b$ cannot be solved uniquely, but often solutions can be found by minimizing some L_{p} norm of the residuals r_{i} such as

$$
L_{p}=\left(\sum_{i=1}^{m}\left|r_{i}\right|^{p}\right)^{1 / p}
$$

where typically p can be 1,2 , or ∞. In some cases starting estimates will be required.
From the main $\operatorname{SimF}_{\text {I }} \mathrm{T}$ menu choose [Statistics] then [Numerical analysis] and run the three options for p using the default test files matrix.tf2 defining the 7 by 5 matrix A and vector.tf2 containing the 7 by 1 vector $b^{T}=(1,2,3,4,5,6,7)$ as follows.
$A=\left(\begin{array}{lllll}1.20 & 3.60 & 1.90 & 8.50 & 3.20 \\ 4.70 & 8.85 & 9.91 & 2.50 & 8.06 \\ 6.34 & 8.12 & 5.56 & 3.45 & 7.76 \\ 3.65 & 7.78 & 3.48 & 1.15 & 6.67 \\ 3.32 & 8.83 & 4.46 & 7.82 & 4.49 \\ 3.61 & 7.82 & 1.08 & 5.22 & 6.38 \\ 6.12 & 5.51 & 8.03 & 5.61 & 4.43\end{array}\right)$

L_{1} norm solution to $A x=b$
$1.9514418 \mathrm{E}+00$
$4.2111129 \mathrm{E}-01$
$-5.6336298 \mathrm{E}-01$
$4.3037848 \mathrm{E}-02$
$-6.7286341 \mathrm{E}-01$
objective function $=4.9251750 \mathrm{E}+00$

L_{2} norm solution to $A x=b$
$1.2955430 \mathrm{E}+00$
$7.7602676 \mathrm{E}-01$
$-3.3656942 \mathrm{E}-01$
$8.2383926 \mathrm{E}-02$
$-9.8542254 \mathrm{E}-01$

The rank of $A($ from $S V D)=5$
objective function $=1.0961673 \mathrm{E}+01$

L_{∞} norm solution to $A x=b$
$1.0529866 \mathrm{E}+00$
$7.4896175 \mathrm{E}-01$
$-2.7683128 \mathrm{E}-01$
$2.6138630 \mathrm{E}-01$
$-9.7904715 \mathrm{E}-01$
objective function $=1.5226995 \mathrm{E}+00$

