

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. http://www.simfit.org.uk

Overdetermined linear equations of the form Ax = b, where the number of rows of matrix A exceeds the number of columns, can often be solved by optimization techniques, although solutions may not be unique.

Such a linear system consisting of a *m* by *n* matrix *A* where m > n, and a *m* by 1 vector *b* as in Ax = b cannot be solved uniquely, but often solutions can be found by minimizing some L_p norm of the residuals r_i such as

$$L_p = \left(\sum_{i=1}^m |r_i|^p\right)^{1/p}$$

where typically p can be 1, 2, or ∞ . In some cases starting estimates will be required.

From the main SIMF_IT menu choose [Statistics] then [Numerical analysis] and run the three options for p using the default test files matrix.tf2 defining the 7 by 5 matrix A and vector.tf2 containing the 7 by 1 vector $b^T = (1, 2, 3, 4, 5, 6, 7)$ as follows.

	(1.20	3.60	1.90	8.50	3.20)
	4.70	8.85	9.91	2.50	8.06
	6.34	8.12	5.56	3.45	7.76
A =	3.65	7.78	3.48	1.15	6.67
	3.32	8.83	4.46	7.82	4.49
	3.61	7.82	1.08	5.22	6.38
	6.12	5.51	8.03	5.61	4.43

 L_1 norm solution to Ax = b1.9514418E+00 4.2111129E-01

-5.6336298E-01 4.3037848E-02 -6.7286341E-01 objective function = 4.9251750E+00

 L_2 norm solution to Ax = b

1.2955430E+00 7.7602676E-01 -3.3656942E-01 8.2383926E-02 -9.8542254E-01 The rank of *A* (from *SVD*) = 5 objective function = 1.0961673E+01

L_{∞} norm solution to Ax = b

1.0529866E+00 7.4896175E-01 -2.7683128E-01 2.6138630E-01 -9.7904715E-01 objective function = 1.5226995E+00