Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. http://www.simfit.org.uk

Linear equations of the form $A x=b$ can be solved uniquely only if the matrix is square and nonsingular.

Under such circumstances $\operatorname{SimF}_{\mathrm{I}} \mathrm{T}$ provides a procedure to solve the following system

$$
\begin{aligned}
A x & =b \\
x & =A^{-1} b
\end{aligned}
$$

to high accuracy, i.e. given a n by n full rank matrix A and a n by vector b, to calculate an n by vector x satisfying the above equations.

From the main $\operatorname{SimF}_{\mathrm{I}} \mathrm{T}$ menu choose [Statistics] then [Numerical analysis] and open the procedure to solve a full rank linear system. The default test files provided to demonstrate the procedure are matrix.tf1 and vector. tf 1 containing the following data.

$$
\begin{aligned}
A= & \left(\begin{array}{lllll}
1.20 & 4.50 & 6.10 & 7.20 & 8.00 \\
3.00 & 5.60 & 3.70 & 9.10 & 12.5 \\
17.1 & 23.4 & 5.50 & 9.20 & 3.30 \\
7.15 & 5.87 & 9.94 & 8.82 & 10.8 \\
12.4 & 4.30 & 7.70 & 8.95 & 1.60
\end{array}\right) \\
b & =\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right)
\end{aligned}
$$

The following table will be output giving the results.

Solution to $A x=b$ where the square matrix A is:		
Test file matrix.tf1: arbitrary 5 by 5 matrix		
and the vector b is:		
Test file vector. tf1: Vector with components $1,2,3,4,5$		
RHS vector b		Solution x
$1.0000000 \mathrm{E}+00$		
$2.0000000 \mathrm{E}+00$		
$3.0000000 \mathrm{E}+00$		
$4.0000000 \mathrm{E}+00$		

The data set consisting of A and b can be varied interactively but error messages will be output under the following conditions.

1. A and b have inconsistent dimensions
2. A is singular
3. The $L U$ factorization failed
4. The system is very ill-conditioned

Under these circumstances a meaningful unique solution cannot be obtained although various other approaches using the pseudo inverse or other techniques may be used to obtain more insight.

