

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. https://simfit.org.uk https://simfit.silverfrost.com

Sometimes a robust estimate is required for the difference in location (with corresponding confidence limits) for two samples, not necessarily of the same size, but without assuming normality or any other distribution.

From the main SIMFIT menu choose [Statistics], navigate to [Data exploration] and open the option for [Robust analysis of two samples]. The two default test files are ttest.tf4 and ttest.tf5 with these values

ttest.tf4	ttest.tf5
134	70
146	118
104	101
119	85
124	107
161	132
107	94
83	
113	
129	
97	
123	

while analysis produces the following results.

Robust analysis of two samples		
X-sample size	12	
Y-sample size	7	
Difference in location	-18.501	
Lower confidence limit	-40.009	
Upper confidence limit	2.997	
Percentage confidence limit	95.30%	
Lower Mann-whitney U-value	19.000	
Upper Mann-Whitney U-value	66.000	

The procedure is based on the assumption that *X* of size n_x is distributed as F(x) and *Y* of size n_y as $F(x-\theta)$, so an estimate $\hat{\theta}$ for the difference in location is calculated as

 $\hat{\theta} = \text{median}(y_j - x_i, i = 1, 2, \dots, n_x, j = 1, 2, \dots, n_y).$

 $100 \alpha\%$ confidence limits U_L and U_H are then estimated by inverting the Mann-Whitney U statistic so that

$$P(U \le U_L) \le \alpha/2$$

$$P(U \le U_L + 1) > \alpha/2$$

$$P(U \ge U_H) \le \alpha/2$$

$$P(U \ge U_H - 1) > \alpha/2.$$