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Polynomial regression is used for data smoothing, detecting trends in noisy data, and for creating calibration
curves for inverse prediction. It is not much used for modeling data, as polynomial curves are too flexible, they
do not accommodate horizontal asymptotes, and they cannot be used for extrapolation. In many applications
nowadays they have been replaced by piecewise cubic splines.

From the main SimFIT menu choose the [A/Z] option, open program polnom, then browse the default test
file polnom.tf1 which contains the following data set.

x y s
0.0 0.098421 0.0056072
0.0 0.10950 0.0056072
0.0 0.10248 0.0056072
2.0 3.8448 0.052139
2.0 3.8647 0.052139
2.0 3.9434 0.052139
4.0 6.8490 0.38867
4.0 6.1469 0.38867
4.0 6.2091 0.38867
6.0 8.5864 0.22982
6.0 9.0156 0.22982
6.0 8.6585 0.22982
8.0 9.8616 0.45524
8.0 9.8748 0.45524
8.0 9.0798 0.45524

10.0 9.5218 0.51790
10.0 9.3098 0.51790
10.0 10.294 0.51790

The columns are for data simulated by SimFIT according to y = 0.1 + 2.0x + 0.1x2 and have the following
meanings.

1. The first column contains the independent variable xi in triplicate.

2. The second column contains the dependent variable yi arising from evaluating the model equation
using SimFIT program makdat, then adding 5% relative error using SimFIT program adderr to simulate
experimental error.

3. The third column are the sample standard deviations si calculated by SimFIT program adderr to use
for weights wi = 1/s2

i . In the absence of replicates to calculate sample standard deviations for yi at
fixed xi , the third column could be replaced by si = 1, or simply omitted, whereupon a default value
of si = 1 would be used for unweighted regression.

Program polnom will then proceed to fit polynomials of degree m according to

f (x) = θ0 + θ1x + θ2x2 + θ3x3 + · · · + θ6x6

for m = 0, 1, 2, . . . , k where k ≤ 6 depends on the number of distinct values of x. That is, m = 0 for a constant
term, m = 1 for a straight line, m = 2 for a quadratic, m = 3 for a cubic, and so on. After fitting each degree,
several statistics are output to assess goodness of fit and determine the highest degree that can be justified.
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The idea of this systematic procedure is to determine if there is statistical evidence to justify a trend line or
progressive curvature in noisy data, or to select a model equation to use as a calibration curve for inverse
prediction. To appreciate this aspect consider the following results tables when the data are analyzed.

Table 1: Degree fitted and Chebyshev coefficients
m A0 A1 A2 A3 A4 A5
0 0.31113
1 16.034 7.9080
2 12.737 4.8194 -1.4456
3 12.735 4.8132 -1.4591 -0.0083774
4 12.762 4.8342 -1.4387 -0.055083 -0.059600
5 12.654 4.6602 -1.3858 -0.087456 -0.035275 0.22979

Another table of statistics required to determine the degree of the polynomial required is also displayed as
follows.

Table 2: Statistics to determine degree of the fitted polynomial
m σ %change W SSQ %change P( χ2 ≥ W SSQ) 5% FV P(F ≥ FV ) 5%
0 36.703 22901 0.0000 no
1 8.0833 77.98 1045.4 95.44 0.0000 no 334.50 0.0000 yes
2 0.9914 87.73 14.744 98.59 0.4700 yes 1048.6 0.0000 yes
3 1.0253 3.42 14.718 0.18 0.3977 yes 0.0249 0.8769 no
4 1.0511 2.52 14.363 2.41 0.3488 yes 0.3213 0.5805 no
5 1.0000 4.87 11.999 16.46 0.4457 yes 2.3639 0.1501 no

Here m is the degree fitted, σ =
√

W SSQ/N DOF, and FV is the F value for assessing the significance of
variance reduction by adding higher degree terms.

There are many results displayed in Tables 1 and 2 in order to suggest the highest degree that can be justified
statistically. The qualitative conclusions do not use a Bonferroni correction, but the actual significance levels
are also provided for purists. At this point SimFIT program polnom outputs the next table to aid decision.

Table 3: information to help you select a best-fit polynomial
Lowest degree where < 10% change in σ 2
Lowest degree where < 10% change in W SSQ 2
Lowest degree by chi-sq. at 5% significance level 2
Lowest degree by chi-sq. at 1% significance level 2
Lowest degree by F test at 5% significance level 2
Lowest degree by F test at 1% significance level 2

Accepting the recommendations of Table 3 leads to Table 4 for the best-fit quadratic.

Table 4: Results for weighted fitting (w = 1/s2)
Parameter Value Std. error Lower95%cl Upper95%cl p
θ0 0.10347 0.0032091 0.096630 0.11031 0.0000
θ1 2.1203 0.019731 2.0783 2.1624 0.0000
θ2 -0.11565 0.0035714 -0.12326 -0.10803 0.0000

Correlation matrix
1

-0.0960 1
0.0516 -0.8432 1
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If you selected to predict x from y the following warning is issued.

You must be very careful if you wish to use this best-fit
curve as a calibration curve for predicting x given y since
there are turning points for Xmin ≤ x ≤ Xmax as follows:
x-value y-value
9.1673 9.8224

This is because the quadratic has a turning point within the range of the data, and so predicting x from y could
be misleading if a horizontal line for y = y0 for some y0 intersected the best fit curve twice. So you have to
choose whether to search upwards or downwards along the x axis for the prediction required. If a spurious
prediction results you have to change the search order. For degrees greater than two there may be multiple
turning points, so using degrees greater than two is not normally recommended for inverse prediction. Table
5 results from choosing to predict x from y and evaluate y given x along with 95% confidence ranges using
the data supplied in test files polnom.tf2 and polnom.tf3.

Table 5: Predicting x given y and evaluating y given x
Evaluation data for program polnom: x = 2, 4, 6, 8

x-input y-calculated 95% confidence limits
2.0 3.8816 3.8212, 3.9419
4.0 6.7345 6.6424, 6.8267
6.0 8.6623 8.5137, 8.8108
8.0 9.6649 9.3927, 9.9370

Inverse prediction data for program polnom: y = 2, 4, 6, 8
y-measured x-predicted 95% confidence limits

2.0 0.94293 0.92529, 0.96118
4.0 2.0718 2.0347, 2.1100
6.0 3.4182 3.3566, 3.4819
8.0 5.1976 5.0739, 5.3342

This next graph, constructed using SimFIT program qnfit, shows the data and best-fit quadratic along with
contributions of the individual components to the fit.
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Theory

It is possible to fit polynomials using multilinear regression with a constant term but with variables defined as
x1 = x, x2 = x2, x3 = x3, . . . , xm = xm . However, this is regarded as an inefficient and numerically inaccurate
technique. The best technique is to transform the original variables x into new variables−1 ≤ x̃ ≤ 1 according
to

x̃ =
2x − xmax − xmin

xmax − xmin

Then a polynomial of degree m is fitted using Chebyshev polynomials as follows

gm ( x̃) = 0.5Am+1,1T0( x̃) + Am+1,2T1( x̃) + Am+1,3T2( x̃) + · · · + Am+1,m+1Tm ( x̃).

In this expression the Tk ( x̃) are Chebyshev polynomials of the first kind of degree k defined as follows.

Tk (x) = cos(k cos−1(x)), k ≥ 0
Tk+1(x) = 2xTk (x) − Tk−1x, k ≥ 1

For instance, T0(x) = 1
T1(x) = x

T2(x) = 2x2 + 1

T3(x) = 4x3 − 3x.

The magnitude of the coefficients Am+1, j indicates the contribution of the corresponding Cheyshev polyno-
mial to the corresponding power of x. When fitting polynomials sequentially the coefficients Am+1, j will tend
to stabilize for powers of x that are contributing to the fit, but will often tend to diminish as further irrelevant
powers are added to the polynomial. So Table 1 provides a quick method for assessing the highest degree
polynomial required for a satisfactory fit. Of course, the coefficients and best-fit curve are transformed back
into the original space after a satisfactory degree has been decided.

The techniques used by SimFIT for calculating confidence limits for evaluation and inverse prediction are
based on extending the methods used for standard unweighted straight line fitting to the case of fitting poly-
nomials to weighted data.
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