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Given a sample from a known distribution it is generally easy to estimate the population parameters using the

sample estimates, but it is not always so easy to determine the confidence limits, such as a 95% confidence

interval. From the main SimFIT menu you can select [Statistics] then the option to perform statistical

calculations. Here you can choose the distribution required and the significance level of interest, then input

the estimates and sample sizes required. Note that the well-known case of a normal distribution leads many

to believe that a confidence interval is always symmetrical about a parameter estimate, but many confidence

intervals will be asymmetric for those distributions (Poisson, binomial) where exact methods are used, not

calculations based on the normal approximation.

Confidence limits for a Poisson parameter

Given a sample G1, G2, . . . , G= of = non-negative integers from a Poisson distribution with parameter _, the

parameter estimate _̂, i.e., the sample mean, and confidence limits _1, _2 are calculated as follows
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and %(_1 ≤ _ ≤ _2) = 1 − U,

using the lower tail critical points of the chi-square distribution. The following very approximate rule-of-

thumb can be used to get a quick idea of the range of a Poisson mean _ given a single count G and exploiting

the fact that the Poisson variance equals the mean

%(G − 2
√
G ≤ _ ≤ G + 2

√
G) ≈ 0.95.

Example

The number of weed seeds in 98 samples of meadow grass yielded these counts with a mean of 3.0204.

Number 0 1 2 3 4 5 6 7 8 9 10

Frequency 3 17 26 16 18 9 3 5 0 1 0

The 95% and 99% noncentral confidence intervals from the estimate were found to be as follows.

Sample size Mean Level Interval

98 3.0204 95% 2.68608 ≤ _ ≤ 3.38483

98 3.0204 99% 2.58737 ≤ _ ≤ 3.50272

1



Confidence limits for a binomial parameter

For : successes in = trials, the binomial parameter estimate ?̂ is :/= and three methods are used to calculate

confidence limits ?1 and ?2 so that

=
∑
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?G1 (1 − ?1)=−G = U/2,
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?G2 (1 − ?2)=−G = U/2.

❍ If max(:, = − :) < 106, the lower tail probabilities of the beta distribution are used as follows

?1 = V:,=−:+1,U/2 ,

and ?2 = V:+1,=−:,1−U/2 .

❍ If max(:, = − :) ≥ 106 and min(:, = − :) ≤ 1000, the Poisson approximation with _ = =? and the

chi-square distribution are used, leading to

?1 =
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2:,U/2,

and ?2 =

1

2=
j2
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❍ If max(:, =− :) > 106 and min(:, =− :) > 1000, the normal approximation with mean =? and variance

=?(1 − ?) is used, along with the lower tail normal deviates /1−U/2 and /U/2, to obtain approximate

confidence limits by solving

: − =?1
√

=?1(1 − ?1)
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and
: − =?2

√
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= /U/2.

The following very approximate rule-of-thumb can be used to get a quick idea of the range of a binomial mean

=? given G and exploiting the fact that the binomial variance variance equals =?(1 − ?)

%(G − 2
√
G ≤ =? ≤ G + 2

√
G) ≈ 0.95.

Example

In a study the number of deaths among pensioners in a six year period were as follows.

Sample size Deaths Probability 95% confidence interval

Non-smokers 1067 117 0.109653 0.091533 ≤ ? ≤ 0.129957

Smokers 402 54 0.134328 0.102548 ≤ ? ≤ 0.171609

Again, note the noncentral 95% confidence intervals for the probability estimates ?̂ as summarized below.

Deaths/Subjects ?̂ 95% Confidence Interval Group

117/1067 0.1097 0.1097 - 0.0182, 0.1097 + 0.0203 Non-smokers

54/402 0.1343 0.1343 - 0.0318, 0.1343 + 0.0373 Smokers
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Confidence limits for a normal mean and variance

If the sample mean is Ḡ, and the sample variance is B2, with a sample of size = from a normal distribution

having mean ` and variance f2, the confidence limits are defined by

%(Ḡ − CU/2,=−1B/
√
= ≤ ` ≤ Ḡ + CU/2,=−1B/

√
=) = 1 − U,

and %((= − 1)B2/j2
U/2,=−1 ≤ f2 ≤ (= − 1)B2/j1−U/2,=−1) = 1 − U

where the upper tail probabilities of the C and chi-square distribution are used.

Example

The body temperature of 25 intertidal crabs was recorded in ℃ as follows: 24.3, 25.8, 24.6, 26.1, 22.9,

25.1, 27.3, 24.0, 24.5, 23.9, 26.2, 24.3, 24.6, 23.3, 25.5, 28.1, 24.8, 23.5, 26.3, 25.4, 25.5, 23.9, 27.0, 24.8,

22.9, 25.4. The sample mean, variance and standard deviation were Ḡ = 25.03, B2 = 1.8, and B = 1.3416408

leading to the following central confidence intervals for the mean and unsymmetrical confidence limits for the

variance.

Sample size Level Parameter Estimate Interval

25 95% Mean 25.03 24.4762 ≤ ` ≤ 25.5838

25 99% Mean 25.03 24.2795 ≤ ` ≤ 25.7805

25 95% Variance 1.8 1.09745 ≤ f2 ≤ 3.48355

25 99% Variance 1.8 0.948231 ≤ f2 ≤ 4.36971

Confidence limits for a correlation coefficient

If a Pearson product-moment correlation coefficient A is calculated from two samples of size = that are jointly

distributed as a bivariate normal distribution, the confidence limits for the population parameter d are given

by
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Example

The wing and tail lengths in cm for 12 birds were as in this next table.

Wing 10.4 10.8 11.1 10.2 10.3 10.2 10.7 10.5 10.8 11.2 10.6 11.4

Tail 7.4 7.6 7.9 7.2 7.4 7.1 7.4 7.2 7.8 7.7 7.8 8.3

This gives a correlation coefficient of A = 0.87 with a sample size of = = 12, leading to the nonsymmetrical

95% confidence interval.

0.589337 ≤ d ≤ 0.963279

Confidence limits for trinomial parameters

If, in a trinomial distribution, the probability of category 8 is ?8 for 8 = 1, 2, 3, then the probability % of

observing =8 in category 8 in a sample of size # = =1 + =2 + =3 from a homogeneous population is given by

% =
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and the maximum likelihood estimates, of which only two are independent, are

?̂1 = =1/#,
?̂2 = =2/#,

and ?̂3 = 1 − ?̂1 − ?̂2.

The bivariate estimator is approximately normally distributed, when # is large, so that
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Such inequalities define regions in the (?1, ?2) parameter space which can be examined for statistically

significant differences between ?8 ( 9) in samples from populations subjected to treatment 9 . Where regions

are clearly disjoint, parameters have been significantly affected by the treatments, as illustrated next.

Plotting trinomial parameter joint confidence regions

A useful rule of thumb to see if parameter estimates differ significantly is to check their approximate central

95% confidence regions. If the regions are disjoint it indicates that the parameters differ significantly and, in

fact, parameters can differ significantly even with limited overlap. If two or more parameters are estimated, it

is valuable to inspect the joint confidence regions defined by the estimated covariance matrix and appropriate

chi-square critical value. Consider, for example, this figure generated by the contour plotting function of

binomial. Data triples G, H, I can be any partitions, such as number of male, female or dead hatchlings from

a batch of eggs where it is hoped to determine a shift from equi-probable sexes. The contours are defined by

(( ?̂G − ?G), ( ?̂H − ?H))
[

?G (1 − ?G)/# −?G ?H/#
−?G ?H/# ?H (1 − ?H)/#

]−1 (
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?̂H − ?H

)

= j2
2:0.05

where # = G + H + I, ?̂G = G/# and ?̂H = H/# as discussed in connection with the trinomial distribution.

When # = 20 the triples 9,9,2 and 7,11,2 cannot be distinguished, but when # = 200 the orbits are becoming

elliptical and converging to asymptotic values. By the time # = 600 the triples 210,330,60 and 270,270,60

can be seen to differ significantly.
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