
TECHNICAL GUIDE TO COMPILING AND LINKING

SIMFITSIMFIT AND SIMDEMSIMDEM
SIMFIT 3D plot for z = f(x,y)

XY

Z

1

0

1

0

0

1

Contours for Rosenbrock Optimization Trajectory

X

Y

-1.500

1.500

1.500-1.500

Key Contour
 1 1.425
 2 2.838
 3 5.663
 4 11.313
 5 22.613
 6 45.212
 7 90.412
 8 1.808×102

 9 3.616×102

 10 7.232×102

1

2

2

3

3

4

4

5

5
6

6

7

7

8

8

9 9

10 10

Contents

1 The zip files 3
1.1 The SIMFIT tree. 3
1.2 The SIMDEM tree . 5

2 Overview 6
2.1 Websites. 6
2.2 Summary . 6
2.3 FTN95 and wclearwin.dll . 7
2.4 FTN95 and compiled HTML. 7
2.5 changesimfit version.exe and NAG DLLs. 7
2.6 w simfit.exe . 8
2.7 Cross compiler issues. 8
2.8 File extensions . 8
2.9 Scripts. 8

3 Source codes 9
3.1 Code style. 9
3.2 Signatures. 10

4 Compilers 11
4.1 Example 1: FTN95 and wclearwin.dll . 11

4.1.1 Configuring FTN95. 11
4.1.2 Compiling the resources. 11
4.1.3 Compiling the source code. 12
4.1.4 Linking the object code. 12

4.2 Example 2: NAGfor and wmenus.dll . 12
4.2.1 Compiling the source code. 12
4.2.2 Linking the object code. 12

5 SIM DEM GUI 13
5.1 w clearwin.dll . 13
5.2 w menus.dll. 13
5.3 w graphics.dll. 13

6 SIM DEM executables 14

7 FTN95 auxiliary items 14
7.1 w simfit.exe . 14
7.2 changesimfit version.exe. 14

8 Numerical analysis 15
8.1 w numbers.dll. 15
8.2 w maths.dll . 15

9 w models.dll 15

10 w simfit.dll 15

11 SIM FIT executables 16

1

12 NAG library details 16
12.1 NAG data files and models. 16
12.2 NAG procedures . 18
12.3 NAG DLL interface. 19
12.4 NAG library updates. 20
12.5 Example: Upgrading from Mark 22 to Mark23. 21
12.6 Example: Upgrading from Mark 23 to Mark24. 22
12.7 Compiling the NAG library source codes. 23

13 Manual 23

14 Distribution 24

15 Makefiles 24

16 64-bit versions 26

2

1 The zip files

SIMFIT is a large package and, to allow programmers to compile subsections of the package, for instance just
the SIMFIT GUI, or only one or a selection of the NAG library routines used by SIMFIT, the code is available
from http:\\www.simfit.org.uk in several forms.

At versions 6 and 7 the SIMFIT and SIMDEM codes are distributed in the following zip files wherex is the
version (usually 6 or 7),y is the level andz is the release number at levely.

demzipx_y_z.zip ... the Simdem package
simzipx_y_z.zip ... the Simfit package
manzipx_y_z.zip ... the reference manual
nagzipx_y_z.zip ... the NAG library interfacing code
naglibx_y_z.zip ... The NAG library source code

Note that the Fortran source in these zip files has been compiled and run successfully using FTN95, NAGfor,
and gFortran under the strictest checking options. Most of the SIMFIT codes do not require the Windows
API, and those that do are collected together in theclearwin andclearwin64 folders, and they have aw_
underscore prefix as inw_config.for. The driver programsw_simfit.exe andx64_simfit.exe also use
the Windows API.

These zip files are intended for the following uses.

• The demzip package
Only provides code necessary to compile and link the SIMFIT GUI, that is the SIMDEM package.

• The simzip package
This is the complete code for the whole of the SIMFIT package.

• The manzip package
All the LATEX sources and graphics files needed to create the SIMFIT reference manual.

• The nagzip package
This is provided for users who wish to upgrade SIMFIT to use a new release of the NAG library DLLs.

• The naglib package
This code enables users to compile all the NAG library codes used by SIMFIT or a subsection of these
codes.

1.1 The S IMFIT tree

The zip files used to distribute the SIMFIT codes assume the following code tree structure of folders below
the top-level simzip folder.

\simzip\work
\simzip\dll\simfit
\simzip\dll\clearwin
\simzip\dll\clearwin64
\simzip\dll\menus
\simzip\dll\graphics
\simzip\dll\maths
\simzip\dll\models
\simzip\dll\nag
\simzip\dll\numbers\...

3

• The work folder
All the source codes, icons, batch files and link scripts usedto compile the SIMFIT package driving
programs.
These codes must be linked to codes in the other folders, usually the DLLs

w_simfit.dll (or x64_simfit.dll)
w_clearwin.dll (or x64_clearwin.dll)
w_menus.dll (or x64_menus.dll)
w_graphics.dll (or x64_graphics.dll)
w_maths.dll (or x64_maths.dll)
w_models.dll (or x64_models.dll)
w_numbers.dll (or x64_numbers.dll)

• The dll simfit folder
Subroutines called from the driving programs. These codes must be linked to codes in the other folders,
usually the DLLs

w_clearwin.dll (or x64_clearwin.dll)
w_menus.dll (or x64_menus.dll)
w_graphics.dll (or x64_graphics.dll)
w_maths.dll (or x64_maths.dll)
w_models.dll (or x64_models.dll)
w_numbers.dll (or x64_numbers.dll)

• The dll clearwin folder
Part of the SIMFIT GUI.
The interface to 32-bit Clearwin. Includes html and jpg codes as well as *.for subroutines.
This code is free-standing and must not be linked to any of theother SIMFIT folders.

• The dll clearwin64 folder
Part of the SIMFIT GUI.
The interface to 64-bit Clearwin. These subroutines have the same names as those in the clearwin
folder but are in free format *.f95 to avoid confusion.
This code is free-standing and must not be linked to any of theother SIMFIT folders.

• The dll menus folder
Part of the SIMFIT GUI.
These subroutines filter calls from elsewhere into a form suitable for calling routines in the clearwin or
clearwin64 folders. There are also free-standing items to control input/output.
This code must be linked to the clearwin code, usually inw_clearwin.dll or x64_clearwin.dll.

• The dll graphics folder
Part of the SIMFIT GUI.
Code to prepare graphics calls before calling items in the clearwin or clearwin64 folders. These codes
must be linked to codes in the other folders, usually the DLLs

w_clearwin.dll (or x64_clearwin.dll)
w_menus.dll (or x64_menus.dll)

• The dll maths folder
Subroutines with the same names and calling sequences as theNAG library. This code is linked into
the academic version of SIMFIT. It must be linked tow_numbers.dll or x64_numbers.dll.

• The dll nag folder
Subroutines with the same names as those in the maths folder except that they are *.f rather than *.for.
This code is linked to the NAG library DLLs so that the NAG version of SIMFIT calls the NAG library
rather than the SIMFIT maths library,

4

• The dll models folder
Subroutines for user-supplied models.
These codes must be linked to codes in the other folders, usually the DLLs

w_maths.dll (or x64_maths.dll)
w_numbers.dll (or x64_numbers.dll)

• The dll numbers folder
Public domain code for numerical analysis called by SIMFIT and subroutines in the maths folder.
This code is free-standing and must not be linked to any of thecodes in the other SIMFIT folders.

1.2 The S IMDEM tree

The SIMDEM package is intended to demonstrate to Fortran programmershow to write Fortran programs
that use the Windows API to create menus, tables, and graphs without knowing anything about the API. All
the subroutine arguments are in standard Fortran and, as it relies on the FTN95 Clearwin functionality and
runtime system, it is only useful for Windows programming.

The zip files used to distribute the SIMDEM codes assume the following code tree structure of folders below
the top-level demzip folder.

\demzip\dll\clearwin
\demzip\dll\clearwin64
\demzip\dll\menus
\demzip\dll\graphics
\demzip\chm
\demzip\extras
\demzip\for
\demzip\f95
\demzip\nag
\demzip\txt

The zip files used to distribute the SIMDEM codes assume the following code tree structure of folders below
the top-level folder.

• The chm folder
HTML files to create thesimdem.chm compiled HTML help file.

• The dll folder
The SIMFIT GUI as explained for the SIMFIT zip files.

• The extras folder
Auxiliaries.

• The f95 folder
Free format code.

• The for folder
Fixed format code.

• The html folder
HTML files for the free-standing SIMDEM help program.

• The nag folder
Test files to demonstrate NAG library procedures.

• The txt folder
Text files.

5

2 Overview

Experienced users can just go to the final section on makefileswhere there are the sequences of command
lines necessary to compile and link the SIMFIT and SIMDEM packages. These can be used to construct
makefiles if makefiles are not distributed with the codes. Otherwise, details and examples follow.

2.1 Websites

The SIMFIT, SIMDEM and LATEX source codes can be downloaded as zip files from

http://www.simfit.org.uk

and they should be unzipped into the tree structures provided. However, it may be necessary to change the
logical drives (e.g. C: instead of D:) or edit some paths to get all of the batch files and link scripts to work.

Note that the utility programfor2f95 , distributed with the SIMDEM package, can be used to transform*.for
files into *.f95 files, if that is required. It was designed to respect features of the code employed to aid
readability and checking and should be used rather than general purpose fixed to free translators which will
destroy such carefully designed structures.

There are also two SIMFIT mirror sites as follows.

http://simfit.usal.es
http://simfit.silverfrost.com

2.2 Summary

SIMFIT and SIMDEM at version 6 can be compiled and linked in such a way that there are no cross compiler
problems, and the resulting packages will run in all versions of Windows, as well as Linux under Wine, and
Macintosh under VMware or Crossover. Details are given for Silverfrost FTN95, which must be used without
the/f_stdcall switch for standard cdecl Silverfrost applications, but with the/f_stdcall switch for the
NAG library versions, and also for NAGfor which must be used with the-compatible switch for NAG DLL
applications.

This is very important, and is mentioned several times in this document for emphasis, as failure to observe
the advice about not mixing cdecl and stdcall binaries leadsto run time crashes that can be very difficult to
trace.

To compile and link SIMFIT to only create the Academic versions then there is no need touse the STDCALL
calling convention, but for versions that may be linked to the NAG library DLLs it is vital to use the STD-
CALL calling convention. It is not possible to mix binaries with both calling conventions. If the NAG library
is going to be used with FTN95 then all the code must be compiled using the/f_stdcall compiler switch,
and with NAGfor the compiler switch-compatible must be used everywhere.

The default installation schemes for the packages are as follows.

For SIMDEM

C:\Program Files\Simdem\bin ... binaries
C:\Program Files\Simdem\dem ... demonstration test data sets
C:\Program Files\Simdem\doc ... documentation
C:\Program Files\Simdem\f95 ... free format code
C:\program Files\Simdem\for ... fixed format code

6

For SIMFIT

C:\Program Files\Simfit\bin ... binaries
C:\Program Files\Simfit\dem ... demonstration test data sets
C:\Program Files\Simfit\doc ... documentation

With 64-bit Windows the installation would be in the following tree

C:\Program Files (x86)

The source code has been written to be consistent with these structures. Some other features are now consid-
ered.

2.3 FTN95 and w clearwin.dll

All the Silverfrost-specific calls are now in just one dynamic link libraries, namelyw_clearwin.dll. This
must be compiled using Salford-Silverfrost FTN95, as it useswinio@ and other calls that rely on the Silver-
frost run time system,salflibc.dll. From Version 6.8.1 the files
w_clearwin.dll,
run6, and
change_simfit_version
are now the only parts of SIMFIT that are FTN95 specific and rely on salflibc.dll.

w_clearwin.dll does not use open, close, inquire, backspace, rewind, read,write, or any actions that would
restrict cross-compiler use.

2.4 FTN95 and compiled HTML

All the compiled HTML help for the SIMFIT and SIMDEM executables is inw_clearwin.dll which must
be compiled using Silverfost FTN95. A compiled HTML SIMDEM help file calledsimdem.chm is now
installed by the SIMDEM installation package.

2.5 change simfit version.exe and NAG DLLs

There is a SIMFIT program calledchange simfit version that can be compiled using FTN95, or could easily
be re-written to be compiled by any compiler. This program can do the following tasks:

Overwrite w_maths.dll using academic_maths.dll
Overwrite w_maths.dll using fldll20_maths.dll
Overwrite w_maths.dll using fldll214a_mkl.dll
Overwrite w_maths.dll using fldll214z_mkl.dll
Overwrite w_maths.dll using fldll214a_nag.dll
Overwrite w_maths.dll using fldll214z_nag.dll
Overwrite w_maths.dll using *************.dll

and is configured by the filechange_simfit_version.config. This results in a consistent version of
SIMFIT that is either free standing (Academic) or NAG DLL based. The package can also be distributed
without the utility
change simfit version.exe ,
but fixed into one of these configurations. The SIMFIT programchange simfit version.exe can be run as
administrator but only when SIMFIT is switched off so as to not be linked tow_maths.dll. The Academic
and NAG versions only differ in the version ofw_maths.dll that is in the same folder as the rest of the
SIMFIT binaries.

Programchange simfit version does not use open, close, inquire, backspace, rewind, read,write, or any
actions that would restrict cross-compiler use.

7

2.6 w simfit.exe

The SIMFIT driver programrun6.exe = w_simfit.exe must be compiled using FTN95 but could, with
some difficulty, be replaced by a new driver written for any compiler, using any language. It links to object
code fromdllchk.for which must be edited for a correct signature.

run6 = w_simfit does not use open, close, inquire, backspace, rewind, read,write, or any actions in such a
way as to restrict cross-compiler use.

2.7 Cross compiler issues

If the main programs and dynamic link libraries are compiledand linked using the same compiler, e.g.
FTN95, NAGfor, etc., there will be no cross compiler problems, as all open, close, read, write, inquire,
etc. will be using the same run-time system. The resources can be compiled using the Silverfrost SRC
compiler or using other resource compilers, such aswindres supplied with MinGWgcc and NAGfor. The
HTML required byw_clearwin.dll can only be compiled using SRC.

In the SIMDEM examples documentation it is explained how to use special subroutines and functions to
perform, read, write, open, close, inquire, etc. to circumvent the situation where code calling the SIMDEM
GUI is not compiled by the same compiler as the GUI.

2.8 File extensions

*.f95 ... Fortran95 file in free format
*.for ... Fortran77 file in fixed format(main programs and dll)

Some are single routines but many are composite.
Some use long names and allocate/deallocate.

*.ins ... Fortran77 file in fixed format(included routines)
Some are single routines but many are composite.
Some are .ins files defining common blocks etc.
These are being phased out in favour of modules.

*.f ... Front end code for the NAG library calls
*.rc ... Resource script for SRC (the Salford resource compiler)

These can also be compiled using windres.
*.ico ... Icon (for *.rc scripts)
*.htm ... HTML script (for *.rc script)
*.link ... Link script for SLINK (the Salford linker) or NAGfor
*.bat ... MS DOS batch file
*.tex ... LaTeX script
*.wgb ... EPS file minus the prolog (prolog.wgb)
*.eps ... EPS file
*.cpp ... C code

2.9 Scripts

The source codes, when unzipped, contain batch files and linkscripts, so that the process is extremely simple.
The batch files all suppose that Silverfrost FTN95 is on the path, but this is only strictly necessary for three
items:

w_clearwin.dll ... Simfit and Simdem
run6.exe = w_simfit.exe ... Simfit only
change_simfit_version.exe ... Simfit only

Otherwise, by making appropriate replicas of the batch filesand link scripts, any Fortran compiler can be
used.

8

It is also assumed that the source codes for

w_clearwin.dll
w_menus.dll
w_graphics.dll

are identical in the SIMDEM and SIMFIT packages. In the event of dedicated NAG and Silverfrost versions,
in future this may not always be the case.

3 Source codes

Download and unzip the latestversionx_y_z zip files as follows:

demzipx_y_z.zip ... the Simdem package
simzipx_y_z.zip ... the Simfit package
manzipx_y_z.zip ... the reference manual
nagzipx_y_z.zip ... the NAG library interfacing code
naglibx_y_z.zip ... The NAG library source code

The SIMDEM package will be unzipped intoC:\demzip
The SIMFIT package will be unzipped intoC:\simzip
The reference manual will be unzipped intoC:\manzip
The NAG library interfacing code will be unzipped intoC:\nagzip
The NAG library source code will be unzipped intoC:\naglib

After unzipping, the source codes can be used to update existing installations.

If you decide to unzip elsewhere it will all be very much harder

Note that the source codes for

w_clearwin.dll
w_menus.dll
w_graphics.dll

in demzip6_x_y.zip, simzip6_x_y.zip, andnagzip6_x_y.zip may not always be identical.

3.1 Code style

The SIMFIT code does contain some obsolescent features, e.g.COMMON blocks andGOTOs, but I am steadily
replacing these. There are no equivalences, entries, Holleriths, subroutine calls creating side effects, or any
of the well known howlers that Fortran allows.

All subroutines are heavily commented, but observers will note how the style has changed progressively from
the days when we had to trap errors using things like

READ (NIN,100,END=20,ERR=40)

so that, in general, routines in upper case with labels and GOTOs will tend to be older than code in lower
case with things like

read (nin,100,iostat=ios)
if (ios.ne.0) then...

At one stage the code never used things like

DO I = 1, N
K(I) = L(I + 1) + 2

ENDDO

9

because of confusion between INTEGER*1, INTEGER*2, and INTEGER*4, and there are many integers
defined in parameter statements because of this, as in

INTEGER N1, N2
PARAMETER (N1 = 1, N2 = 2)
...
DO I = N1, N

K(I) = L(I + N1) + N2
ENDDO

Subsequently, I did maintain this feature so that integers used explicitly in a subroutine were all declared and
could be easily traced.

Another feature is that I tend to use argument lists like this

CALL SOME_THING (I, J, K,
A, B, C,
XTITLE, YTITLE, ZTITLE,
ABORT, OK, QUIT)

with integers, then double precisions, then characters, then logicals, all in alphabetical order within their type.
This helps type checking but was not always done with older code.

Note that using code with unnecessary continuation lines like

call putadv (
+’Input a file like manova1.tf1’)

instead of just

call putadv (’Input a file like manova1.tf1’)

was adopted to make the work of the Spanish translators easier

3.2 Signatures

All S IMFIT programs have signatures to identify the version and release numbers, and these are constantly
checked during normal operation so that users can be warned of any inconsistencies. All binaries in a SIMFIT
installation must have the same signature, so you must edit the signature codes for version and release num-
bers as follows:

For the SIMDEM package:

C:\simfit6\dll\menus\dllmen.for
C:\simfit6\dll\graphics\dllgra.for
C:\simfit6\dll\clearwin\dllclr.for
C:\simdem\simdem.for
C:\simdem\for\simdem.for
C:\simdem\f95\simdem.f95

For the SIMFIT package:

C:\simit6\work\dllchk.for
C:\simfit6\dll\simfit\dllsim.for
C:\simfit6\dll\menus\dllmen.for
C:\simfit6\dll\graphics\dllgra.for
C:\simfit6\dll\models\dllmod.for

10

C:\simfit6\dll\numbers\dllnum.for
C:\simfit6\dll\clearwin\dllclr.for
C:\simfit6\dll\maths\dllmat.for
C:\simfit6\dll\nag\dllmat_mark20.f ... now done by makenag.bat
C:\simfit6\dll\nag\dllmat_mkl214a.f ... now done by makenag.bat
C:\simfit6\dll\nag\dllmat_mkl214z.f ... now done by makenag.bat
C:\simfit6\dll\nag\dllmat_nag214a.f ... now done by makenag.bat
C:\simfit6\dll\nag\dllmat_nag214z.f ... now done by makenag.bat

Forchange simfit version.exe in the SIMFIT package edit the filechange_simfit_version.config stored
in theC:\setup\programs folder.

For the reference manual version and release numbers:

C:\manuals\manual0\color.tex
C:\manuals|manual0\mono.tex

4 Compilers

Examples are given for Silverfrost FTN95 and NAGfor but, except for one essential item and three nonessen-
tial auxiliary items for which FTN95 must be used, any Fortran compiler can be used. Note that most com-
pilers can create binaries consistent with either the cdeclcalling convention, or the stdcall calling convention.
It is possible to link executables to DLLs built using eitherconvention but, in general, it is best to use just one
of these conventions, e.g. stdcall for Excel, Visual Basic,NAG library DLLs, etc. 64-bit versions can also be
compiled using NAGfor or gFortran.

4.1 Example 1: FTN95 and w clearwin.dll

As an example of how to use FTN95, the complete procedure for creatingw_clearwin.dll will be described.
This DLL is an essential part of SIMFIT and SIMDEM and must be compiled using the Silverfrost FTN95
compiler.

4.1.1 Configuring FTN95

First of all, the command

ftn95 /config

must be used to configure the compiler for either
a) cdecl (default) for some C programs, or
b) stdcall (for VB, Excel, NAG DLLs, Windows API, etc.)
Note that/f_stdcall compromises some/checkmate functionality.

4.1.2 Compiling the resources

Icons and HTML source code must be compiled into object code using the resource compiler SRC where
necessary (for the one essential item and the three FTN95-specific auxiliary items).

For example, this command issued from theC:\simfit6\dll\clearwin folder

src ico_clr

will use the script fileico_clr.rc to compile the*.ico, *.htm, and*.jpg files into an object file for
loading intow_clearwin.dll.

11

4.1.3 Compiling the source code

It may be advisable to edit the format statement inw_config.for to upgrade defaults for the SIMFIT auxil-
iaries, or even alter this code to specify completely new defaults. After that, this command issued from the
C:\simfit6\dll\clearwin folder

ftn95 *.for

will create *.obj files from all the *.for files in that local folder. Note that batch filesf.bat are provided
where compiler directives can be added if required to override the defaults placed by the command

ftn95 /config

into the fileftn95.cfg. In that case, the simple command

f *

can be used to create the*.obj files.

4.1.4 Linking the object code

This uses the Silverfrost linker SLINK.

To illustrate, if you issue the command

slink clearwin.link

from within C:\simfit6\dll\clearwin, then SLINK will use the link scriptclearwin.link to create
w_clearwin.dll. A batch filemakeclr.bat is provided to createw_clearwin.dll, and this can be edited
to include the compilation phase as well if required.

You should not try to build the SIMFIT or SIMDEM packages using the Plato IDE, as it is infinitely better to
use the batch and link files supplied with the source code to dothis.

4.2 Example 2: NAGfor and w menus.dll

As an example, the complete procedure for using NAGfor to createw_menus.dll will be described.

NAGfor creates intermediate C code that is passed to thegcc compiler for creating object code*.o, and also
for linking. Thegcc auxiliary programwindres can be used to compile resources, and the-compatible
compiler switch (formerly-f77) creates code according to the stdcall convention.

4.2.1 Compiling the source code

For instance, the command

nagfor -compatible -c *.for

issued from withinC:\simfit6\dll\menus will create *.o files from all the *.for files in that folder.

4.2.2 Linking the object code

This uses NAGfor to pass link instructions on togcc, and it will only work if there is an existing copy of
C:\simfit6\dll\clearwin\w_clearwin.dll. This is only needed so the export table can be scanned to
satisfy all the references.

12

For example, the command

nagfor @nagfor_menus.link

will createw_menus.dll using the link scriptnagfor_menus.link.

You should not try to build the SIMFIT or SIMDEM packages using the NAG Fortran Builder IDE, as it is
infinitely better to use the batch and link files supplied withthe source code to do this.

5 SIMDEM GUI

This consists of three DLLs.

w_clearwin.dll
w_menus.dll
w_graphics.dll

5.1 w clearwin.dll

This must be compiled and linked using Silverfrost FTN95.

Do not use/f_stdcall for the standard Silverfrost version.
Use/f_stdcall for the NAG version.

Procedure A.

Change to C:\simfit6\dll\clearwin
Type src ico_clr to compile the HTML code
Type scc scroll_kludge to compile scroll_kludge.cpp
Type f w_editor to create the module rp_editor_module
Type f module_clearwin to create the module module_clearwin
Type f * to cause the f.bat program to compile the object code
Type makeclr to activate makeclr.bat

5.2 w menus.dll

Procedure B.

Change to C:\simfit6\dll\menus
Type f * to cause the f.bat program to compile the object code
Type makemen to activate makemen.bat

The linker SLINK will report unsatisfied references if it cannot findC:\simfit6\dll\w_clearwin.dll.

5.3 w graphics.dll

Procedure C.

Change to C:\simfit6\dll\graphics
Type f module_savegks to compile the module_savegks
Type f * to cause the f.bat program to compile the object code
Type makegra to activate makegra.bat and
link to w_clearwin.dll

13

The linker SLINK will report unsatisfied references if it cannot findC:\simfit6\dll\w_clearwin.dll

Repeat procedures A, B, and C (if SLINK reports unresolved references) untilw_clearwin.dll andw_graphics.dll
andw_menus.dll are all consistent.

6 SIMDEM executables

This is done inC:\simdem and requires local copies ofw_clearwin.dll, w_menus.dll, andw_graphics.dll.

• To make the standard non/f_stdcall Silverfrost version

Use ftn95 /config to make sure /f_stdcall is switched off
Type make_SILVERFROST_simdem to activate make_SILVERFROST_simdem.bat

• To make the/f_stdcall Silverfrost version

Use ftn95 /config to make sure /f_stdcall is switched on
Type make_SILVERFROST_simdem to activate make_SILVERFROST_simdem.bat

• To make the NAGfor -compatible version

Type make_NAG_simdem to activate make_NAG_simdem.bat

7 FTN95 auxiliary items

For SIMFIT only, not SIMDEM you must first edit then compiledllchk.for.

The two auxiliary items are

1. The driverrun6.exe = w_simfit.exe, and

2. change_simfit_version.exe.

If Silverfrost FTN95 is not going to be used then it would be easier to build a neww_simfit.exe driver from
scratch.

7.1 w simfit.exe

Change toC:\simfit6\work
Typegetdll to make local copies of the SIMFIT DLLs available
Typef run6 to activatef.bat to createrun6.obj
Typeslink run6.link to createrun6.exe
Type copyrun6.exe to w_simfit.exe to create the SIMFIT driver

7.2 change simfit version.exe

Change toC:\simfit6\work
Typef change_simfit_version thenslink change_simfit_version.link

14

8 Numerical analysis

The files concerned are

w_maths.dll and
w_numbers.dll

but there are several variants due to the fact that there are academic versions as well as NAG versions.

This is how the system works.

• Every installation of SIMFIT requiresw_maths.dll andw_numbers.dll

• This pair must be consistent in any installation

• The only difference between versions of SIMFIT is in the pair of DLLs that are linked in

• In all versions:w_numbers.dll is completely free standing and includes BLAS and LAPACK
SIMFIT is dependent on thisw_numbers.dll

• In the Academic versionw_maths.dll is linked tow_numbers.dll

• Instead, in the NAG versionsw_maths.dll is linked to the NAG DLLs.

This is how to prepare the DLLs

8.1 w numbers.dll

Change to C:\simfit6\dll\numbers and type compile to activate
compile.bat then makenum to make w_numbers.dll

8.2 w maths.dll

Change to C:\simfit6\dll\maths and type f* to activate f.bat,
then type makemat to make w_maths.dll and academic_maths.dll
Change to C:\simfit6\dll\nag and type make_all_nag to make the
NAG library linked versions. It will be necessary to study
and possibly edit make_all_nag.bat and the link files it calls.
It may be necessary to edit change_simfit_version.config if links to
the NAG library DLLs are required.

9 w models.dll

Change toC:\simfit6\dll\models

Type f * to activate f.bat
Type makemod to activate makemod.bat

10 w simfit.dll

Change toC:\simfit6\dll\simfit

Type f * to activate f.bat
Type makesim to activate makesim.bat

15

11 SIMFIT executables

Change toC:\simfit6\work

Type f * to activate f.bat
Type linkall to activate linkall.bat
Type makew to activate makew.bat

12 NAG library details

It should be noted that some of the information in this section refers to NAG routines that are no longer
extant, because they have been deleted from the library. Forexample,j06sbf was in the obsolete NAG
graphics library. However most of the functionality that was available in the former NAG graphics library
is still available using the SIMFIT graphics procedures. Again, the old G05 routines for random number
generators, and some other obsolete routines, are still referenced due to their extremely widespread use in
SIMFIT but what happens in such cases is that there is extra code to call the newer replacement routines.
When NAG routines are called, users can interactively edit all the control parameters described in the NAG
documentation, but in some cases the SIMFIT routines have extra functionality and can call the routines
with additional parameters, which is done by planting code that is activated when additional arguments are
required.

12.1 NAG data files and models

The following SIMFIT test files are data sets and model equations taken from the NAG documentation that are
used in SIMFIT to demonstrate the NAG library routines. These files are allavailable after using the[NAG]
button of the SIMFIT files Open control, but in most cases they are presented as defaults anyway when the
routine is called. The list of files is maintained in the filelist.nag, and all that is required to add further
files is to editlist.nag and place the new files in the SIMFIT file store, aslist.nag is scanned for this list
each time the [NAG] button is activated.

Models
c05adf.mod 1 function of 1 variable
c05nbf.mod 9 functions of 9 variables
d01ajf.mod 1 function of 1 variable
d01eaf.mod 1 function of 4 variables
d01fcf.mod 1 function of 4 variables
e04fyf.mod 1 function of 3 variables
Data
c02agf.tf1 Zeros of a polynomial
e02adf.tf1 Polynomial data
e02baf.tf1 Data for fixed knot spline fitting
e02baf.tf2 Spline knots and coefficients
e02bef.tf1 Data for automatic knot spline fitting
e04fyf.tf1 Data for curve fitting using e04fyf.mod
f01abf.tf1 Inverse: symposdef matrix
f02fdf.tf1 A for Ax = (lambda)Bx
f02fdf.tf2 B for Ax = (lambda)Bx
f02wef.tf1 Singular value decomposition
f02wef.tf2 Singular value decomposition
f03aaf.tf1 Determinant by LU
f03aef.tf1 Determinant by Cholesky
f07fdf.tf1 Cholesky factorisation
f08kff.tf1 Singular value decomposition
f08kff.tf2 Singular value decomposition

16

g02baf.tf1 Correlation: Pearson
g02bnf.tf1 Correlation: Kendall/Spearman
g02bny.tf1 Partial correlation matrix
g02daf.tf1 Multiple linear regression
g02gaf.tf1 GLM normal errors
g02gbf.tf1 GLM binomial errors
g02gcf.tf1 GLM Poisson errors
g02gdf.tf1 GLM gamma errors
g02haf.tf1 Robust regression (M-estimates)
g02laf.tf1 Partial Least squares X-predictor data
g02laf.tf2 Partial Least Squares Y-response data
g02laf.tf3 Partial Least Squares Z-predictor data
g02wef.tf1 Singular value decomposition
g02wef.tf2 Singular value decomposition
g03aaf.tf1 Principal components
g03acf.tf1 Canonical variates
g03adf.tf1 Canonical correlation
g03baf.tf1 Matrix for Orthomax/Varimax rotation
g03bcf.tf1 X-matrix for procrustes analysis
g03bcf.tf2 Y-matrix for procrustes analysis
g03caf.tf1 Correlation matrix for factor analysis
g03ccf.tf1 Correlation matrix for factor analysis
g03daf.tf1 Discriminant analysis
g03dbf.tf1 Discriminant analysis
g03dcf.tf1 Discriminant analysis
g03eaf.tf1 Data for distance matrix: calculation
g03ecf.tf1 Data for distance matrix: clustering
g03eff.tf1 K-means clustering
g03eff.tf2 K-means clustering
g03faf.tf1 Distance matrix for classical metric scaling
g03ehf.tf1 Data for distance matrix: dendrogram plot
g03ejf.tf1 Data for distance matrix: cluster indicators
g04adf.tf1 ANOVA
g04aef.tfl ANOVA library file
g04caf.tf1 ANOVA (factorial)
g07bef.tf1 Weibull fitting
g08aef.tf1 ANOVA (Friedman)
g08aff.tfl ANOVA (Kruskall-Wallis)
g08agf.tf1 Wilcoxon signed ranks test
g08agf.tf2 Wilcoxon signed ranks test
g08ahf.tf1 Mann-Whitney U test
g08ahf.tf2 Mann-Whitney U test
g08cbf.tf1 Kolmogorov-Smirnov 1-sample test
g08daf.tf1 Kendall coefficient of concordance
g08raf.tf1 Regression on ranks
g08rbf.tf1 Regression on ranks
g10abf.tf1 Data for cross validation spline fitting
g11caf.tf1 Stratified logistic regression
g12aaf.tf1 Survival analysis
g12aaf.tf2 Survival analysis
g12baf.tf1 Cox regression
g13dmf.tf1 Auto- and cross-correlation matrices
j06sbf.tf1 Time series

17

12.2 NAG procedures

• a00acf, a00adf

• c02agf

• c05adf, c05azf, c05nbf

• d01ajf, d01eaf

• d02cjf, d02ejf

• e02adf, e02akf, e02baf, e02bbf, e02bcf, e02bdf, e02bef, e02gbf, e02gcf

• e04jyf, e04kzf, e04uef, e04uff

• f01abf, f01acf, f01adf

• f02aaf, f02aff, f02ebf, f02fdf

• f03aaf, f03abf, f03aef, f03aff

• f04aff, f04agf, f04ajf, f04asf, f04atf

• f06eaf, f06ejf, f06qff, f06yaf, f06raf

• f07adf, f07aef, f07agf, f07ajf, f07fdf

• f08aef, f08aff, f08faf, f08kaf, f08kef, f08kff, f08mef, f08naf, f08saf

• fz1caf, fz1clf

• g01aff, g01bjf, g01bkf, g01cef, g01dbf, g01ddf, g01eaf, g01ebf, g01ecf, g01edf, g01eef, g01eff,
g01emf, g01faf, g01fbf, g01fcf, g01fdf, g01fef, g01fff, g01fmf, g01gbf, g01gcf, g01gdf, g01gef

• g02baf, g02bnf, g02byf, g02caf, g02gaf, g02gbf, g02gcf, g02gdf, g02gkf, g02haf, g02laf, g02lcf,
g02ldf

• g03aaf, g03acf, g03adf, g03baf, g03bcf, g03caf, g03ccf, g03daf, g03dbf, g03dcf, g03eaf, g03ecf,
g03eff, g03ejf, g03faf, g03fcf

• g04adf, g04aef, g04agf, g04caf

• g05cbf, g05ccf, g05daf, g05dbf, g05dcf, g05ddf, g05def, g05dff, g05dhf, g05dpf, g05dyf, g05ecf,
g05edf, g05ehf, g05eyf, g05fff, g05kff, g05kgf, g05ncf, g05saf, g05scf, g05sdf, g05sff, g05sjf, g05skf,
g05slf, g05smf, g05snf, g05sqf, g05ssf, g05taf, g05tdf, g05tjf, g05tlf

• g07aaf, g07abf, g07bef, g07daf, g07ddf, g07eaf, g07ebf

• g08aaf, g08aef, g08acf, g08aff, g08agf, g08ahf, g08ajf, g08akf, g08baf, g08cbf, g08cdf, g08daf,
g08eaf, g08raf, g08rbf

• g10abf, g10acf, g10baf, g10zaf

• g11caf

• g12aaf, g12baf, g12zaf

• g13aaf, g13abf, g13acf, g13adf, g13aef, g13ahf

• s01baf

• s11aaf, s11abf, s11acf

18

• s13aaf, s13acf, s13adf

• s14aaf, s14abf, s14acf, s14adf, s14baf

• s15abf, s15acf, s15adf, s15aef, s15aff

• s17acf, s17adf, s17aef, s17aff, s17agf, s17ahf, s17ajf, s17akf

• s18acf, s18adf, s18aef, s18aff

• s19aaf, s19abf, s19acf, s19adf

• s20acf, s20adf

• s21baf, s21bbf, s21bcf, s21bdf, s21caf

• x01aaf, x02ajf, x02alf, x02amf, x03aaf

12.3 NAG DLL interface

In order for SIMFIT to run with any version of the NAG library, and to have additional functionality, like
extra arguments, or calling obsolete routines, the named procedures just listed are not called directly from
SIMFIT. What happens is that there is a set of dummy procedures withexactly the same argument lists as
required by the NAG library, but they all have an additional dollar sign at the end of the named procedure.
Inside the source code of such dummy procedures is a call to SIMFIT subroutineputifa so SIMFIT will
always run withIFAIL = -1, but then write out NAG messages for nonzeroIFAIL values, or results from
iterative procedures, to a file callednagifail.txt. Some dummy procedures, of course, will also have the
code for extra functionality referred to previously.

As an example, consider the subroutineD01AJF for quadrature. This would be accessed by a call as follows

CALL D01AJF$(F, A, B, EPSABS, EPSREL, RESUL, ABSERR, W, LW,
+ IW, LIW, IFAIL)

but this would be included in a version ofw_maths.dll which linked in to the object code from compiling
the subroutineD01AJF$.F coded as follows.

C
C

SUBROUTINE D01AJF$(F, A, B, EPSABS, EPSREL, RESUL, ABSERR, W, LW,
+ IW, LIW, IFAIL)

C
IMPLICIT NONE
INTEGER IFAIL, LIW, LW, IW(LIW)
DOUBLE PRECISION F, A, B, EPSABS, EPSREL, RESUL, ABSERR, W(LW)
EXTERNAL D01AJF, F, GETIFA
CALL GETIFA (IFAIL)
CALL D01AJF (F, A, B, EPSABS, EPSREL, RESUL, ABSERR, W, LW,
+ IW, LIW, IFAIL)
END

C
C

This mode of operation has several very considerable advantages.

❍ It is a trivial matter to update SIMFIT to use future versions of the NAG library, without having to
change the SIMFIT source code.

❍ It is simple to shunt calls to obsolete routines into calls tonewer procedures without needing to change
the source code.

19

❍ The behavior of the NAGIFAIL mechanism can be changed by a one line edit.

❍ It is easy to create modules to run from within the SIMFIT environment that could link directly to the
NAG DLLs, and so bypass the SIMFIT dollar sign mechanism if required.

It should be indicated that any executable made using the NAGFortran Builder that is linked in to the
SIMDEM GUI and calls the NAG library DLLs can be used as a module fromwithin the SIMFIT envi-
ronment.

12.4 NAG library updates

The only difference between alternative versions of SIMFIT is the filew_maths.dll. This is either linked to
the SIMFIT numerical libraries, or one of the NAG library DLLs. The usual procedure would be to make a
SIMFIT DLL stub, so that SIMFIT can be used with a new version of a NAG DLL that is not covered by the
current SIMFIT distribution. This stub is then used bychange simfit version.exe to overwrite the current
version ofw_maths.dll so that SIMFIT links to the NAG library.

The recommended procedure is first summarized, details are given, then a worked example is provided.

❍ Download and unzipnagzip***.zip from www.simfit.org.uk.

❍ Study a typical batch file such asmakenag_markxy.bat which is for Mark xy.

❍ Make a copy of this file that just adds the new NAG DLLs to the SIMFIT repertoire.

❍ It may be necessary to edit a couple of other files referenced by this batch file as described below

❍ Runmakenag_markxy.bat to create the new SIMFIT DLL linked to the NAG Mark xy DLL

❍ Add this new SIMFIT DLL to the SIMFIT distribution

The following details give a description of exactly what to do to to take an existing compiled version of
SIMFIT and make it link to a new version of the NAG DLLs.

It will be assumed that the Silverfrost-Salford FTN95 or NAGNAGfor compiler is going to be used and that
the SIMFIT code has been unzipped into the folderc:\simfit6\dll\nag using the zip filenagzip***.zip
distributed with the SIMFIT package. Once a certain amount of limited coding has been completed it is then
only necessary to run the batch filemakenag_markxy.bat, which compiles and links everything. To use
different paths or alternative compilers a certain amount of extra editing would be necessary. In order to
perform the upgrade it will be necessary to look at the file system defined in the next section, identify the
extremely simple codes that are needed, act accordingly, then simply type

makenag_markx

to use FTN95 or, if NAGfor is to be used, type

makenag_markxy_nagfor

to create the upgrade to the NAG library at Mark xy.

Files needed to build the NAG DLL interface

1. Link scripts for the compiler

The files below are completed and only need to be edited if the paths to the NAG library DLLs have
been changed.
One file is needed for each DLL to be created.

20

nag_mark20.link
mkl_mark21a.link
mkl_mark21z.link
mkl_mark22m.link
mkl_mark23m.link
nag_mark21a.link
nag_mark21z.link
nag_mark22m.link
nag_mark23m.link
mkl_mark23m_nagfor.link
nag_mark23m_nagfor.link
mkl_mark24m_nagfor.link
nag_mark24m_nagfor.link

2. The DLLs to be created

All of these DLL stubs can be created at each new release if required, which can be done by the
makefilesmakenag_xy.bat files. However, this requires archived copies of all previous DLLs and
should not normally be used. It would be usual to make an edited copy of e.g.makenag_23m.bat to
only create just one new version.

fldll20_maths.dll
fldll214a_mkl_maths.dll
fldll214z_mkl_maths.dll
fldll224m_mkl_maths.dll
fldll234m_mkl_maths.dll
fldll214a_nag_maths.dll
fldll214z_nag_maths.dll
fldll224m_nag_maths.dll
fldll234m_nag_maths.dll

3. The makefile

This is, for example,makenag_mark23.bat which does the following:

a. Compile using FTN95
b. Link
c. Create the DLLs

Browsingmakenag_mark23.bat, for example, will make all the above perfectly clear. It is only pos-
sible to make a DLL if the path to the NAG DLL in the link script points to an existing NAG DLL.

4. Other action required

Editchange_simfit_version.config and make sure this file, the filechange_simfit_version.exe,
and the dummy DLLs described above are distributed with the package.

Note that no action is required that involves the rest of the SIMFIT package. All that is needed to
upgrade the SIMFIT package to use a new version of a NAG DLL is to make sure that the SIMFIT binary
folder contains a copy of the new SIMFIT DLL linked to the new NAG DLL, and that the edited version
of change_simfit_version.config has been used to overwrite the existing filew_maths.dll.

12.5 Example: Upgrading from Mark 22 to Mark23

This example should be imitated so that SIMFIT can be made link to future releases of the NAG library DLLs.
It is important to note that any compiler can be used, not justFTN95 or NAGfor, and SIMFIT can be used

21

with any version of the NAG library without any recompilation of the SIMFIT code: all that is required is
simple editing of some text files and the creation of a new stublinking SIMFIT to the new NAG DLLs.

At Mark 23 some of the routines used by SIMFIT from the F02 and G05 chapters were deleted. Now it would
be extremely difficult to edit the SIMFIT code every time a routine is deleted. Instead, SIMFIT uses a dummy
name so that the code can be called from the Academic maths library or any past, present, or future release
of the NAG library. To understand how this is done please inspect the following files:

f02_mark23.f

for the F02 update and the file

g05_mark23.f

for the G05 update. Such a large redirection is not usually required, but was necessary at Mark 23 because
some LAPACK routines had been omitted at Mark 22 and a wholesale upgrade to the random number gener-
ators was made available.

The steps required were as follows.

1. Copymkl_mark22m.link to mkl_mark23m.link then edit.

2. Copynag_mark22m.link to nag_mark23m.link then edit.

3. Copymakenag_mark22.bat to makenag_mark23.bat then edit.

4. Typemakenag_mark23 to create the new DLL stubs.

5. Check that the following new DLLs have been created
fldll234m_mkl_maths.dll and
fldll234m_nag_maths.dll.

6. Editchange_simfit_version.config to reference the Mark 23 DLLs.

7. Add the following files to the SIMFIT program folder
change_simfit_version.config
fldll234m_mkl_maths.dll and
fldll234m_nag_maths.dll.

8. As administrator, run the executable
change_simfit_version.exe in the SIMFIT folder.

12.6 Example: Upgrading from Mark 23 to Mark24

This is particularly easy as there were no routines used by SIMFIT that became obsolete. Here is an abbrevi-
ated form ofmakenag_mark24.bat which creates the dummy DLLs.

echo Step 1: Compile all the *.f source code (optional if all *.obj files exist)
ftn95 /f_stdcall getifa_ftn95.f95
ftn95 /f_stdcall *.f

echo Step 2: Create the new nag dll linked to the nag mark23m NAG DLL
slink nag_mark24m.link

echo Step 3: Create the new mkl dll linked to the mkl mark23m NAG DLL
slink mkl_mark24m.link

22

12.7 Compiling the NAG library source codes

This section adds additional information to the previous section on numerical analysis (page15) so that users
can appreciate how to compile selected routines instead of the whole NAG library replacement DLLs. The
naglib zip files unzip into amaths folder containing the source codes for the NAG routines, anda numbers
folder with subfolders containing auxiliary routines. A list of public domain software and acknowledgement
of the programmers involved will be found in the SIMFIT reference manualw_manual.pdf.

The source codes used to replace some 215 library routines called by SIMFIT are a mixture of public domain
subroutines, some edited to conform to the NAG library calling sequences, but with some subroutines created
from scratch. This code only contains standard Fortran constructs and can be compiled using any Fortran
compiler. Nevertheless, several things should be noted.

1. Some of the subroutines in themaths folders are dummy stubs for subroutines that are called by the
NAG version of SIMFIT but are not called by the academic version of SIMFIT and they just return
IFAIL = -399. Also many of the routines in thenumbers subfolders are not called by the NAG
library routines but are called from elsewhere in SIMFIT so, to avoid compiling the whole of the maths
and numbers subroutines and just compile a particular NAG routine, it will be necessary to check for
dependencies within thenumbers subfolders and simply extract the code required.

2. The routines treatIFAIL as an intent (out) variable that is zeroized on entry to the routines. So the
input IFAIL value is not used. However, as far as possible, the exitIFAIL values correspond to the
NAG documentation, but the error trapping must be done by users supplying their own checking code
for nonzeroIFAIL exits, as I have done in the SIMFIT package.

3. The routines have exactly the same names as the NAG ones except for an added dollar character to the
routine name. However the arguments are exactly the same.

4. Some of the routines use the workspaces dimensioned as forthe NAG routines but some use additional
workspaces, mostly created as temporary workspaces using allocate.

5. Some routines are as good, or even better, than the NAG routines, but some were thrown together in
a hurry and are not so polished. I never got round to optimizing some code, particularly searching,
sorting, selecting between accuracy and speed, avoiding repetition, or economizing on storage, and
this is often indicated in the comments.

6. Users may wish to use their own implementations of packages likeBLAS, LAPACK, andSLATEC.

7. The codes are nearly all in fixed format*.for style and, if free format*.f95 code is preferred, you
should use my SIMFIT programfor2f95 , as this is designed to maintain the readability built into the
original code that will be destroyed by general purpose fixedto free translators.

13 Manual

Translating or extending the manuals will be very easy, since a very strict LATEX style has been used. Pro-
grammers will observe that at one or two points handcraftinghas been used (e.g.\newpage), and this will
have to be edited. Note also that most of the diagrams are included as*.wgb files. The fileprolog.wgb con-
tains the PostScript header that has been cut out of the individual PostScript files to save space. By pasting
prolog.wgb back into the*.wgb files they become*.eps files. Of coursedvips only needsprolog.wgb
once as a special. Note thatmakeindex is required to create the index. Ashyperef is used, a call to
dvips thenps2pdf converts the*.dvi file into *.ps and*.pdf with hyperlinks. By obvious editing in
w_manual.tex, as inmono_manual.tex, a monochrome manual can be produced. Usually the package
is distributed withw_manual.pdf in color with hyperlinks, butmono_manual.pdf, andw_manual.ps in
monochrome for high resolution monochrome printing.

Programmers should definitely use the default folders otherwise it will be necessary to edit every call to
included graphics files throughout the whole document.

23

C:\manuals ...LaTeX w_manual [1st pass]
LaTeX w_manual [2nd pass]
Makeindex w_manual [1st pass]
LaTeX w_manual [3rd pass]
(Makeindex w_manual) [2nd pass ?]
(LaTeX w_manual) [4th pass ?]
dvips w_manual [w_manual.ps]
ps2pdf w_manual [w_manual.pdf]

C:\manuals\promote LaTeX promote
dvips promote [promote.ps]
ps2pdf promote.ps [promote.pdf]

C:\manuals\ms_office LaTeX ms_office
dvips ms_office [ms_office.ps]
ps2pdf ms_office.ps [ms_office.pdf]

C:\manuals\pscodes LaTeX pscodes
dvips pscodes [pscodes.ps]
ps2pdf pscodes.ps [pscodes.pdf]

C:\manuals\source LaTeX source
dvips source [source.ps]
ps2pdf source.ps [source.eps]

14 Distribution

To make the SIMFIT self-extracting installation program, use edited versions of the scriptsimfit.iss and
text fileinfobefo.txt with Inno Setup from

http://www.jordanr.cjb.net/
or
http://www.jordanr.dhs.org/.

In the case of SIMDEM the files aresimdem.iss anddemobefo.txt.

However, by editing the information filesinfobefo.txt anddemobefo.txt if required, and analyzing the
compilation scriptssimfit.iss andsimdem.iss to appreciate what paths are involved, any program can be
used to distribute the packages.

15 Makefiles

It is important to note that if frequent changes of compiler are made then modules can become inconsistent.
For this reason the object code generated for the SIMFIT package program files and the GUI DLLs
w_simfit.dll
w_graphics.dll
should be compiled twice in succession to make sure the correct modules are linked in.

The procedure with dedicated FTN95 scripts is described forSIMFIT while for SIMDEM using NAGfor is
also illustrated with dedicated NAGfor commands. Check that all the batch files and link scripts have correct
paths and that all subfolders exist and contain the necessary files. Also, make sure all signatures are updated
and that SRC has been used to create objects from the icon*.ico and*.rc files then proceed as follows.

For FTN95 and the SIMFIT package the sequence of commands is:

ftn95 /config
cd c:\simfit6\dll\numbers
compile

24

makenum
cd c:\simfit6\dll\maths
f *
makemat
cd c:\simfit6\dll\clearwin
src ico_clr
scc scroll_kludge
f w_editor
f module_clearwin
f *
makeclr
cd c:\simfit6\dll\menus
f *
makemen
cd c:\simfit6\dll\graphics
f module_savegks
f*
makegra
cd c:\simfit6\dll\models
f *
makemod
cd c:\simfit6\dll\simfit
f orthog
f *
makesim
cd c:\simfit6\dll\help
makehlp
cd c:\simfit6\dll\nag
make_all_nag
cd c:\simfit6\work
getdll
src ico_sim6
src ico_run6
f *
linkall
makew
cd c:\setup\programs
update
cd ..
notepad infobefo.txt

Now run the Inno-setup compiler usingsimfit.iss, rename theC:\setup\output\setup.exe file appro-
priately and zip up.

For FTN95 and the SIMDEM package the sequence of commands is:

ftn95 /config
cd c:\simfit6\dll\clearwin
src ico_clr
scc scroll_kludge
f w_editor
f module_clearwin
f *
makeclr
cd c:\simfit6\dll\menus

25

f *
makemen
cd c:\simfit6\dll\graphics
f module_savegks
f *
makegra
cd c:\simdem
getdll
make_SILVERFROST_simdem
notepad demobefo.txt
cd c:\simdem\output

For NAGfor and the SIMDEM package the sequence of commands is to first use FTN95 as follows:

ftn95 /config
cd c:\simfit6\dll\clearwin
src ico_clr
scc scroll_kludge
f w_editor
f module_clearwin
f *
makeclr

which createsw_clearwin.dll. Then use

cd c:\nagfor\dll\menus
nagfor -compatible -c -w=x77 -f2003 *.for
nagfor @nagfor_makemen.link
cd c:\nagfor\dll\graphics
nagfor -compatible -c -w=x77 -f2003 module_savegks.for
nagfor -compatible -c -w=x77 -f2003 *.for
nagfor @nagfor_makegra.link
cd c:\simdem
get_nagdll
make_NAG_simdem
notepad demobefo.txt
cd c:\simdem\output

Now run the Inno-setup compiler usingsimdem.iss, rename thec:\simdem\output\setup.exe file ap-
propriately and zip up. Single makefiles calling batch files can be used to compile and link these packages,
but these may not be distributed with the source codes to avoid confusion. Following the above sequence of
command lines should allow anybody to create their own makefiles.

16 64-bit versions

Note that the previous mechanism involving a pipe between the 32-bit and 64-bit binaries is discontinued.

From release 6.9.1 onwards 64-bit SIMFIT uses a new interface to 64-bit Clearwin+ in which all the calls
such as

i = winio@
are now replaced by

i = winio\$.
This is so that the Clearwin+ code in SIMFIT can be compiled using NAGfor or gFortran. The 64-bit version
of SIMFIT now uses exactly the same code as the 32-bit version, exceptfor some temporary fixes that require
additional features to construct the 64-bit equivalent ofw_clearwin.dll.

26

The main differences between 64-bit SIMFIT and 32-bit SIMFIT are as follows.

• All executables begin withx64_ instead ofw_.

• Object code is compiled using
NAGfor -abi=64 *.for -ieee=full -f2003 -w=all -c
although there is now more *.f95 free form source. For instance, with 64-bit gFortran,
gfortran %1.f95 -c -fno-underscoring -fdollar-ok -mwindows -Wall -Wextra

• The 64-bit files use different icons, compiled using 64-bit windres.

• The new DLLs are

x64_clearwin.dll ... replaces w_clearwin.dll
x64_menus.dll ... replaces w_menus.dll
x64_graphics.dll ... replaces w_graphics.dll
x64_simfit.dll ... replaces w_simfit.dll
x64_maths.dll ... replaces w_maths.dll
x64_models.dll ... replaces w_models.dll
x64_numbers.dll ... replaces w_numbers.dll

• New run-time systems are required as follows

clearwin64.dll ... run-time system for 64-bit Clearwin+
lib64f53.dll ... run-time system for 64-bit NAGfor
libgcc_s_sj1j-1.dll ... run-time system for 64-bit gFortran
libgfortran-3.dll ... run-time system for 64-bit gFortran
libquadmath-0.dll ... run-time system for 64-bit gFortran

• makefiles
The zip distribution has all the batch files and link files required to create 64-bit SIMFIT from the
source files. For instance, to createx64_clearwin.dll the following sequence is required.

1. Createico_x64_clr.o usingwindres with ico_x64_clr.rc in theclearwin folder.

2. Copyico_x64_clr.o into theclearwin64 folder.

3. Usenag64 * to create*.o files and similar for*.o files from*.f95 files.

4. UseNAGfor @x64_clearwin.link to makex64_clearwin.dll.

Comments and requests for help tow.g.bardsley@gmail.com

27

	Cover
	Contents
	The zip files
	The Simfit tree
	Simdem tree

	Overview
	Websites
	Summary
	FTN95 and w_clearwin.dll
	FTN95 and compiled HTML
	change_simfit_version.exe and NAG DLLs
	w_simfit.exe
	Cross compiler issues
	File extensions
	Scripts

	Source codes
	Code style
	Signatures

	Compilers
	Example 1: FTN95 and w_clearwin.dll
	Configuring FTN95
	Compiling the resources
	Compiling the source code
	Linking the object code

	Example 2: NAGfor and w_menus.dll
	Compiling the source code
	Linking the object code

	Simdem GUI
	w_clearwin.dll
	w_menus.dll
	w_graphics.dll

	Simdem executables
	FTN95 auxiliary items
	w_simfit.exe
	change_simfit_version.exe

	Numerical analysis
	w_numbers.dll
	w_maths.dll

	w_models.dll
	w_simfit.dll
	Simfit executables
	NAG library details
	NAG data files and models
	NAG procedures
	NAG DLL interface
	NAG library updates
	Example: Upgrading from Mark 22 to Mark23
	Example: Upgrading from Mark 23 to Mark24
	Compiling the NAG library source codes

	Manual
	Distribution
	Makefiles
	64-bit versions

