Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. http://www.simfit.org.uk

Given two matrices A and B, it is frequently necessary to form the product, or the product of the transposes, as an m by n matrix C, where $m \geq 1$ and $n \geq 1$. The options are

$$
\begin{aligned}
& C=A B, \text { where } A \text { is } m \times k, \text { and } B \text { is } k \times n, \\
& C=A^{T} B, \text { where } A \text { is } k \times m, \text { and } B \text { is } k \times n, \\
& C=A B^{T}, \text { where } A \text { is } m \times k, \text { and } B \text { is } n \times k, \\
& C=A^{T} B^{T}, \text { where } A \text { is } k \times m, \text { and } B \text { is } n \times k,
\end{aligned}
$$

as long as $k \geq 1$ and the dimensions of A and B are appropriate to form the product, as indicated.
From the main SimFIT menu choose [Statistics] followed by [Numerical analysis], and then open the Cholesky factorization procedure and save the lower triangular matrix L to a file. Then use the matrix multiplication procedure from the $\mathrm{SIMF}_{\mathrm{I}} \mathrm{T}$ numerical analysis options to form the product $L L^{T}$ as shown below.

The current matrix A			
4.16	-3.12	0.561	-0.10
-3.12	5.03	-0.83	1.09
0.56	-0.83	0.76	0.34
-0.10	1.09	0.34	1.180

Estimated lower triangular \hat{L} where $A=L L^{T}$			
$2.0396078 \mathrm{E}+00$			
$-1.5297059 \mathrm{E}+00$	$1.6401219 \mathrm{E}+00$		
$2.7456259 \mathrm{E}-01$	$-2.4998141 \mathrm{E}-01$	$7.8874881 \mathrm{E}-01$	
$-4.9029034 \mathrm{E}-02$	$6.1885642 \mathrm{E}-01$	$6.4426613 \mathrm{E}-01$	$6.1606334 \mathrm{E}-01$
Estimated product $\hat{A}=\hat{L} \hat{L} \hat{L}^{T}$			
$4.1600000 \mathrm{E}+00$	$-3.1200001 \mathrm{E}+00$	$5.6000000 \mathrm{E}-01$	$-1.0000000 \mathrm{E}-01$
$-3.1200001 \mathrm{E}+00$	$5.0300000 \mathrm{E}+00$	$-8.3000000 \mathrm{E}-01$	$1.0900000 \mathrm{E}+00$
$5.6000000 \mathrm{E}-01$	$-8.3000000 \mathrm{E}-01$	$7.6000001 \mathrm{E}-01$	$3.4000000 \mathrm{E}-01$
$-1.0000000 \mathrm{E}-01$	$1.0900000 \mathrm{E}+00$	$3.4000000 \mathrm{E}-01$	$1.1800000 \mathrm{E}+00$

Another example using the singular value decomposition routine, followed by multiplying the calculated U, Σ, and V^{T} matrices for the simple 4 by 3 matrix indicated shows that, while for exact factors

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 / \sqrt{6} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 \\
-1 / \sqrt{6} & 0 & -1 / \sqrt{2} \\
-2 / \sqrt{6} & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
0 & 1 & 0 \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right),
$$

singular value decomposition to yield the calculated factors $\hat{U}, \hat{\Sigma}$ and \hat{V}^{T} followed by matrix multiplication leads to the following matrix.

The product matrix $\hat{A}=\hat{U} \hat{\Sigma} \hat{V}^{T}$			
$1.0000000 \mathrm{E}+00$	$-1.5700925 \mathrm{E}-16$	$1.2789252 \mathrm{E}-08$	
$0.0000000 \mathrm{E}+00$	$1.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	
$1.2789252 \mathrm{E}-08$	$2.2204460 \mathrm{E}-16$	$1.0000000 \mathrm{E}+00$	
$1.0000000 \mathrm{E}+00$	$1.5700925 \mathrm{E}-16$	$1.0000000 \mathrm{E}+00$	

Numbers colored red in the above results tables can be regarded as correct since any digits less than 10^{-7} are due to rounding error and can be taken as zero compared to 1 .

