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It is often of interest to fit a model to data in order to estimate parameters such as the 50% point from

dose-response curves, and SimFIT provides several dedicated programs for this purpose such as the following.

• exfit: fits one or sums of exponentials and calculates the area under the curve (AUC).

• mmfit: fits one or sums of Michaelis-Menten models and calculates the apparent Km.

• hlfit: fits one or sums of binding models and calculates the apparent Ka.

• sffit: fits cooperative binding models and calculates half saturation points.

• gcfit: fits nonlinear growth models and calculates maximal growth rates.

• inrate: fits several models and calculates initial rates.

• polnom: fits polynomials and calculates y given x.

• calcurve: fits cubic splines and calculates y given x.

• qnfit: fits user defined models and calculates y given x.

These programs all assume uncorrelated normally distributed errors, but there are many procedures, such

as bioassay, dose-response curves, determination of LD50, or EC50 etc. where binomially distributed errors

would be more appropriate, and so it would be better to fit general linear models (GLM)

This would be a situation such as the following dose-response data set contained in the default test file

ld50.tf1 which can be inspected after opening the main SimFIT menus, followed by selecting [Statistics],

[Analysis of proportions], then [Bioassay, dose response curves and LD50].

y N x
1 10 1

4 20 2

4 10 3

5 10 4

15 30 5

7 10 6

9 10 7

12 15 8

9 10 9

8 10 10

Data for determination of LD50 by GLM requires the above format as follows for k groups and i = 1, 2, . . . , k.

• Column 1: yi ≥ 0, the number of animals dying in group i

• Column 2: Ni ≥ yi , the number of animals tested in group i

• Column 3: xi ≥ 0, the amount of poison being tested on group i

If the k groups are all independent and each group is homogeneous, i.e., each animal in the group has exactly

the same probability p of dying given the same time of exposure to poison at amount x for the same period of

time, then y is binomially distributed and pi can be estimated as p̂i = yi/Ni , together with exact confidence

limits.
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It is usual to investigate a data set to choose a model with the lowest deviance and the next table shows the

results from analysis of the data in the default test file using the three GLM link functions indicated.

Method: GLM with binomial errors, Link: Logistic

Number of groups = 10, Deviance = 4.246

Parameter Value Standard error Lower 95%cl Upper 95%cl p
Constant -2.0986 0.4733 -3.190 -1.007 0.0022

Slope 0.45070 0.08725 0.2495 0.6519 0.0009

50% point 4.6564 0.4441 3.632 5.681 0.0000

Method: GLM with binomial errors, Link: Probit

Number of groups = 10, Deviance = 4.564

Parameter Value Standard error Lower 95%cl Upper 95%cl p
Constant -1.2513 0.2708 -1.876 -0.6269 0.0017

Slope 0.26678 0.04855 0.1548 0.3787 0.0006

50% point 4.6902 0.4463 3.661 5.719 0.0000

Method: GLM with binomial errors, Link: Complementary log-log

Number of groups = 10, Deviance = 6.600

Parameter Value Standard error Lower 95%cl Upper 95%cl p
Constant -1.6696 0.3295 -2.429 -0.9097 0.0010

Slope 0.26635 0.05079 0.1492 0.3835 0.0008

50% point 4.89220 0.5182 3.697 6.087 0.0000

In this case the logistic and probit models give a similar fit, which is somewhat better than the complementary

log-log, and so the standard probit graph is shown next.
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Various options are available for testing the goodness of fit by plotting residuals or inspecting tables of

residuals as shown next.

Number Y -value Theory Deviance Leverages

1 1 1.624 -0.5692 0.2308

2 4 4.729 -0.3912 0.3731

3 4 3.260 0.4907 0.1391

4 5 4.270 0.4645 0.1030

5 15 15.99 -0.3612 0.2652

6 7 6.366 0.4227 0.09853

7 9 7.311 1.328 0.1282

8 12 12.17 -0.1118 0.2492

9 9 8.749 0.2476 0.1985

10 8 9.217 -1.219 0.2143

Note that exact 95% confidence limits can also be plotted but, as these can be large and very distracting with

small samples, they can be switched off.

A further point can be made about this GLM procedure. Suppose that, instead of a file with y, N, x for the

proportion failing, we input a file with N − y, N, x. This would then be the proportion surviving as plotted

below.
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Note that this change from proportion failing to the complement, that is the proportion surviving, leads to

exactly the same estimate for LD50.

Another variant of the this technique is that a parameter can be changed in order to estimate other percentiles

than the 50% point, e.g., LD25, LD75, EC25, ID25, ED75, etc.
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Theory 1: GLM

It is important to understand that fitting dose-response curves in the manner just described does not correspond

to the usually understood technique of adjusting the parameters of a deterministic mathematical model by

optimization to obtain a best-fit curve that minimizes the sum of squared residuals. For this reason a brief

overview of generalized linear modeling (GLM) is now presented.

To understand the motivation for this technique, it is usual to refer to a typical doubling dilution experiment

in which diluted solutions from a stock containing infected organisms are plated onto agar in order to count

infected plates, and hence estimate the number of organisms in the stock. Suppose that before dilution the

stock had N organisms per unit volume, then the number per unit volume after x = 0, 1, . . . ,m dilutions will

follow a Poisson dilution with µx = N/2x . Now the chance of a plate receiving no organisms at dilution x
is the first term in the Poisson distribution , that is exp(−µx ), so if px is the probability of a plate becoming

infected at dilution x, then

px = 1 − exp(−µx ), x = 1, 2, . . . ,m.

Evidently, where the px have been estimated as proportions from yx infected plates out of nx plated at dilution

x, then N can be estimated using

log[− log(1 − px )] = log N − x log 2

considered as a maximum likelihood fitting problem of the type

log[− log(1 − px )] = β0 + β1x

where the errors in estimated proportions px = yx/nx are binomially distributed. So, to fit a generalized linear

model, you must have independent evidence to support your choice for an assumed error distribution for the

dependent variable Y from the normal, binomial, Poisson, or gamma distributions, in which it is supposed

that the expectation of Y is to be estimated, i.e.,

E(Y ) = µ.

The associated pdfs are parameterized as follows.

normal : fY =
1

√
2π σ

exp

(

−
(y − µ)2

2σ2

)

binomial: fY =

(

N
y

)

πy (1 − π)N−y

Poisson: fY =
µy exp(−µ)

y!

gamma: fY =
1

Γ(ν)

(

νy

µ

)

ν

exp

(

−
νy

µ

)

1

y

It is a mistake to make the usual unwarranted assumption that measurements imply a normal distribution,

while proportions imply a binomial distribution, and counting processes imply a Poisson distribution, unless

the error distribution assumed has been verified for your data. Another very questionable assumption that has

to made is that a predictor function η exists, which is a linear function of the m covariates, i.e., independent

explanatory variables, as in

η =

m
∑

j=1

β j x j .

Finally, yet another dubious assumption must be made, that a link function g(µ) exists between the expected

value of Y and the linear predictor. The choice for

g(µ) = η
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depends on the assumed distribution as follows. For the binomial distribution, where y successes have been

observed in N trials, the link options are the logistic, probit or complementary log-log

logistic: η = log

(

µ

N − µ

)

probit: η = Φ−1
(

µ

N

)

complementary log-log: η = log

(

− log

(

1 −
µ

N

))

.

Where observed values can have only one of two values, as with binary or quantal data, it may be wished

to perform binary logistic regression. This is just the binomial situation where y takes values of 0 or 1,

N is always set equal to 1, and the logistic link is selected. However, for the normal, Poisson and gamma

distributions the link options are

exponent: η = µa

identity: η = µ

log: η = log(µ)

square root: η =
√
µ

reciprocal: η =
1

µ
.

In addition to these possibilities, you can supply weights and install an offset vector along with the data set,

the regression can include a constant term if requested, the constant exponent a in the exponent link can be

altered, and variables can be selected for inclusion or suppression in an interactive manner. However, note

that the same strictures apply as for all regressions: you will be warned if the SVD has to be used due to

rank deficiency and you should redesign the experiment until all parameters are estimable and the covariance

matrix has full rank, rather than carry on with parameters and standard errors of limited value.

Theory 2: 95% confidence regions in inverse prediction

The calculation of confidence limits for derived values, such as LD50 in the present case, that are obtained

from the parameter estimates from fitting along with the estimated parameter covariance matrix should be

noted.

polnom estimates non-symmetrical confidence limits assuming that the N values of y for inverse prediction

and weights supplied for weighting are exact, and that the model fitted has n parameters that are justified

statistically. calcurve uses the weights supplied, or the estimated coefficient of variation, to fit confidence

envelope splines either side of the best fit spline, by employing an empirical technique developed by simulation

studies. Root finding is employed to locate the intersection of the yi supplied with the envelopes. The AUC,

LD50, half-saturation, asymptote and other inverse predictions in SimFIT use a t distribution with N − n
degrees of freedom, and the variance-covariance matrix estimated from the regression. That is, assuming a

prediction parameter defined by p = f (θ1, θ2, . . . , θn), a central 95% confidence region is constructed using

the prediction parameter variance estimated by the propagation of errors formula

V̂ (p) =
n

∑

i=1

(

∂ f
∂θi

)2

V̂ (θi) + 2

n
∑

i=2

i−1
∑

j=1

∂ f
∂θi

∂ f
∂θ j

ĈV (θi, θ j ).

Note that this formula for the propagation of errors can be used to calculate parameter standard errors for

parameters that are calculated as functions of parameters that have been estimated by fitting, such as apparent

maximal velocity when fitting sums of Michaelis-Menten functions. However, such estimated standard errors

will only be very approximate.

5


