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It is usual to analyze a time series for autocorrelations before proceeding to ARIMA.

From the main SimFIT menus choose [Statistics], [Time series] then [Lags and autocorrelations], analyze the
test file times.tf1, then plot the undifferenced time series to obtain the following graph.
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As there is clearly an increasing trend with these data it would be sensible to try a non-seasonal differencing
of order 1 to remove a linear trend leading to the following differenced series.
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The next table presents the results from an analysis with such a non-seasonable differencing of one and
calculating for ten lags.

Current data title is: Test file times.tf1: time series data (J06SBF)
Original dimension (NX) 100
After differencing (NXD) 99
Non-seasonal order (ND) 1
Seasonal order (NDS) 0
Seasonality (NS) 0
Number of lags (NK) 10
Number of PACF (NVL) 10
X -mean (differenced) 0.42833
X -variance (differenced) 0.31521
Statistic (S) 83.1349
P( χ2 ≥ S) 0.0000 Reject H0 at 1% significance level

Lag R PACF VR ARP
1 0.5917 0.591740 0.649844 0.391570
2 0.5258 0.270263 0.602378 0.398778
3 0.3087 -0.129867 0.592219 0.001602
4 0.1536 -0.143970 0.579944 -0.143950
5 0.0345 -0.054313 0.578233 -0.136536
6 -0.0297 0.011048 0.578162 -0.045279
7 -0.0284 0.071092 0.575240 0.147351
8 -0.0642 -0.044918 0.574080 0.130623
9 -0.1366 -0.175865 0.556324 -0.067066

10 -0.2619 -0.249824 0.521603 -0.249824

The abbreviations used in this table are defined as follows.

Abbreviation Meaning
X the sample (i.e. vector of data with no missing values)
NX dimension of X
XD transformed vector derived from X by differencing
NXD dimension of XD (i.e. NXD = NX - ND - NS*NDS)
ND order of non-seasonal differencing
NDS order of seasonal differencing
NS seasonality of seasonal differencing
NK number of lags requested
NL number of partial correlations requested
NVL number of valid partial correlations
R calculated autocorrelation coefficients
PACF calculated partial autocorrelation coefficients
VR calculated predictor error variance ratios
ARP calculated autoregressive parameters of maximum order
S statistic for testing H0: all autocorrelations zero
Note if ND = NDS = NS = 0, the original sample X is analyzed

From these results the χ2 test clearly indicates that not all correlations are zero, so it is useful to proceed to
comparing the strengths of autocorrelations and partial autocorrelations as functions of the lags.
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Note that, in the next figures, the approximate 95% confidence limits are estimated as 2/
√

n, where n is the
sample size after differencing (if any).
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These figures illustrate what is summarized in the previous table, that only the correlations with lags of one
and two are highly significant.
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Theory

A time series is a vector x(t) of n > 1 observations xi obtained at a sequence of points ti , e.g., times,
distances, etc., at fixed intervals ∆, i.e.

∆ = ti+1 − ti, for i = 1, 2, . . . , n − 1,

and it is assumed that there is some seasonal variation, or other type of autocorrelation to be estimated.

A linear trend can be removed by first order differencing

∇xt = xt − xt−1,

while seasonal patterns of seasonality s can be eliminated by first order seasonal differencing

∇s xt = xt − xt−s .

Note that differencing of orders d = N D, D = N DS, and seasonality s = N S may be applied repeatedly to a
series so that

wt = ∇d∇Ds xt

will be shorter, of length N X D = n − d − D × s, and will extend for t = 1 + d + D × s, . . . , N X .

Non-seasonal differencing up to order d is calculated sequentially using

∇1xi = xi+1 − xi for i = 1, 2, . . . , n − 1
∇2xi = ∇1xi+1 − ∇1xi for i = 1, 2, . . . , n − 2
. . .

∇d xi = ∇d−1xi+1 − ∇d−1xi for i = 1, 2, . . . , n − d

while seasonal differencing up to order D is calculated by the sequence

∇d∇1
s xi = ∇d xi+s − ∇d xi for i = 1, 2, . . . , n − d − s

∇d∇2
s xi = ∇d∇1

s xi+s − ∇d∇1
s xi for i = 1, 2, . . . n − d − 2s

. . .

∇d∇Ds xi = ∇d∇D+1
s xi+s − ∇d∇D+1

s xi for i = 1, 2, . . . , n − d − D × s.

Note that, as indicated in the previous tables, either the original sample X of length N X , or a differenced
series X D of length N X D, can be analyzed interactively, by simply adjusting N D, N DS, or N S. Also
the maximum number of autocorrelations NK < N X D and maximum number of partial autocorrelations
L ≤ NK , can be controlled, although the maximum number of valid partial autocorrelations NV L may turn
out to be less than L. Now, defining either x = X , and n = N X , or else x = X D and n = N X D as appropriate,
and using K = NK , the mean and variance are recorded, plus the autocorrelation function R, comprising the
autocorrelation coefficients of lag k according to

rk =
n−k∑
i=1

(xi − x̄)(xi+k − x̄)
/ n∑
i=1

(xi − x̄)2.

If n is large and much larger than K , then the S statistic

S = n
K∑
k=1

r2
k

has a chi-square distribution with K degrees of freedom under the hypothesis of zero autocorrelation, and so
it can be used to test that all correlations are zero.
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The partial autocorrelation function PACF has coefficients at lag k corresponding to pk,k in the autoregres-
sion

xt = ck + pk,1xt−1 + pk,2xt−2 + · · · + pk,l xt−k + ek, t

where ek, t is the predictor error, and the pk,k estimate the correlation between xt and xt+k conditional upon
the intermediate values xt+1, xt+2, . . . , xt+k−1. Note that the parameters change as k increases, and so k = 1
is used for p1,1, k = 2 is used for p2,2, and so on.

These parameters are determined from the Yule-Walker equations

ri = pk,1ri−1 + pk,2ri−2 + · · · + pk,kri−k, i = 1, 2, . . . , k

where r j = r | j | when j < 0, and r0 = 1.

An iterative technique is used and it may not always be possible to solve for all the partial autocorrelations
requested. This is because the predictor error variance ratios V R are defined as

vk = V ar (ek, t )/V ar (xt )
= 1 − pk,1r1 − pk,2r2 − · · · − pk,krk,

unless |pk,k | ≥ 1 is encountered at some k = L0, when the iteration terminates, with NV L = L0 − 1.

The Autoregressive parameters of maximum order ARP are the final parameters pL, j for j = 1, 2, . . . , NV L
where NV L is the number of valid partial autocorrelation values, and L is the maximum number of partial
autocorrelation coefficients requested, or else L = L0 − 1 as before in the event of premature termination of
the algorithm.
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