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It is convenient to deal separately with univariate calibration and bioassay, as multivariate calibration is
performed in SimFIT using the partial least squares (PLS) technique.

Calibration

This requires fitting a curve y = f (x) to a (x, y) training data set with x known exactly and y measured with
limited error, so that the best fit model f̂ (x) can then be used to predict xi given arbitrary yi . Usually the
model is of no significance and steps are taken to use a data range over which the model is approximately
linear, or at worst a shallow smooth curve. It is assumed that experimental errors arising when constructing
the best fit curve are uncorrelated and normally distributed with zero mean, so that the standard curve is a
good approximation to the maximum likelihood estimate.

• Calibration curves

Creating and using a standard calibration curve involves:

1. Measuring responses yi at fixed values of xi , and using replicates to estimate si , the sample
standard deviation of yi if possible.

2. Preparing a curve fitting type file with x, y, and s using program makfil, and using makmat to
prepare a vector type data file with xi values to predict yi .

3. Finding a best fit curve y = f (x) to minimize W SSQ, the sum of weighted squared residuals.

4. Supplying yi values and predicting xi together with 95% confidence limits, i.e. inverse-prediction
of xi = f̂ −1(yi ). Sometimes you may also need to evaluate yi = f̂ (xi ).

It may be that the si are known independently, but often they are supposed constant and unweighted
regression, i.e. all si = 1, is unjustifiably used. Any deterministic model can be used for f (x), e.g.,
a sum of logistics or Michaelis-Menten functions using program qnfit, but this could be unwise. Cal-
ibration curves arise from the operation of numerous effects and cannot usually be described by one
simple equation. Use of such equations can lead to biased predictions and is not always recommended.
Polynomials are useful for gentle curves as long as the degree is reasonably low (≤ 3 ?) but, for many
purposes, a weighted least squares data smoothing cubic spline is the best choice. Unfortunately poly-
nomials and splines are too flexible and follow outliers, leading to oscillating curves, rather than the
data smoothing that is really required. Also they cannot fit horizontal asymptotes. You can help in
several ways.

a) Get good data with more distinct x-values rather than extra replicates.

b) If the data approach horizontal asymptotes, either leave some data out as they are no use for pre-
diction anyway, or try using log(x) rather than x, which can be done automatically by program
calcurve.

c) Experiment with the weighting schemes, polynomial degrees, spline knots or constraints to find the
optimum combinations for your problem.

d) Remember that predicted confidence limits also depend on the s values you supply, so either get the
weighting scheme right, or set all all si = 1.

• Turning points in calibration curves

Some programs will warn you if f (x) has a turning point, since this can make inverse prediction
ambiguous. You can then re-fit to get a new curve, eliminate bad data points, get new data, etc., or
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carry on if the feature seems to be harmless. You will be given the option of searching upwards or
downwards for prediction in such ambiguous cases. It should be obvious from the graph, nature of
the mathematical function fitted, or position of the turning point in which direction the search should
proceed.

• Calibration using polynomials

For linear or almost linear data you can use program linfit which just fits straight lines of the form

f (x) = p0 + p1x.

However, for smooth gentle curves, program polnom is preferred because it can also fit a polynomial

f (x) = p0 + p1x + p2x2 + · · · + pn xn,

where the degree n is chosen according to statistical principles. What happens is that polnom fits
all polynomials from degree 0 up to degree 6 and gives statistics necessary to choose the statistically
justified best fit n. However, in the case of calibration curves, it is not advisable to use a value of n
greater than 2 or at most 3, and warnings are issued if the best fit standard curve has any turning points
that could make inverse prediction non-unique.

• Calibration using cubic splines

If a polynomial of degree 2 or at most 3 is not adequate, a cubic spline calibration curve could be
considered. It does not matter how nonlinear your data are, calcurve can fit them with splines with
several types of knots and tension. The best-fit spline curve from programs such as calcurve, compare,
and spline can be archived for repeated initialization of a reference standard curve to use for calibration.

• Advanced calibration using special models

Sometimes you would want to use a specific mathematical model for calibration such as a straight line
through the origin, or a quadratic with no linear term, but other models might be more appropriate.
For instance, a mixture of two High/Low affinity binding sites or a cooperative binding model might
be required for a saturation curve, or a mixture of two logistics might adequately fit growth data. If
you know an appropriate model for the standard curve, use qnfit for inverse prediction because, after
fitting, the best-fit curve can be used for calibration, or for estimating derivatives or areas under curves
(AUC) if appropriate.

Bioassay

This is a special type of calibration, where the data are obtained over as wide a range as possible, nonlinearity
is accepted (e.g. a sigmoid curve), and specific parameters of the underlying response, such as the time to
half-maximum response, final size, maximum rate, area AUC, EC50, LD50, or IC50 are to be estimated.
With bioassay, a known deterministic model may be required, and assuming normally distributed errors may
sometimes be a reasonable assumption, but alternatively the data may consist of proportions in one of two
categories (e.g. alive or dead) as a function of some treatment, so that binomial error is more appropriate and
probit analysis, or similar, is called for.

A special type of inverse prediction is required when equations are fitted to dose response data in order
to estimate some characteristic parameter, such as the half time t1/2, the area under the curve AUC, or
median effective dose in bioassay (e.g. ED50, EC50, IC50, LD50, etc.), along with standard errors and 95%
confidence limits. The model equations used in this sort of analysis are not supposed to be exact models
constructed according to scientific laws, rather they are empirical equations, selected to have a shape that is
close to the shape expected of such data sets. So, while it is is pedantic to insist on using a model based on
scientific model building, it is important to select a model that fits closely over a wide variety of conditions.
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Older techniques, such as using data subjected to a logarithmic transform in order to fit a linear model, are no
longer called for as they are very unreliable, leading to biased parameter estimates. Hence, in what follows,
it is assumed that data are to be analyzed in standard, not logarithmically transformed coordinates, but there
is nothing to prevent data being plotted in transformed space after analysis, as is frequently done when the
independent variable is a concentration, i.e., it is desired to have an the independent variable proportional to
chemical potential. The type of analysis called for depends very much on the nature of the data, the error
distribution involved, and the goodness of fit of the assumed model. It is essential that data are obtained over a
wide range, and that the best fit curves are plotted and seen to be free from bias which could seriously degrade
routine estimates of percentiles, say. The only way to decide which of the following procedures should be
selected for your data, is to analyze the data using those candidate models that are possibilities, and then to
adopt the model that seems to perform best, i.e., gives the closest best fit curves and most sensible inverse
predictions.

• Exponential models

If the data are in the form of a simple or multiphasic exponential decline from a finite value at t = 0
to zero as t → ∞, and half times t1/2, or areas AUC are required, use exfit to fit one or a sum of two
exponentials with no constant term.

• Trapezoidal estimation

If no deterministic model can be used for the AUC it is usual to prefer the trapezoidal method with no
data smoothing, where replicates are simply replaced by means values that are then joined up sequen-
tially by sectional straight lines. The program average is well suited to this sort of analysis.

• The Hill equation

This empirical equation is

f (x) =
Axn

Bn + xn
,

which can be fitted using program inrate, with either n estimated or n fixed, and it is often used
in sigmoidal form (i.e. n > 1) to estimate the maximum value A and half saturation point B, with
sigmoidal data (not data that are only sigmoidal when x-semilog transformed, as all binding isotherms
are sigmoidal in x-semilog space).

• Ligand binding and enzyme kinetic models

There are three cases:
a) data are increasing as a function of an effector, i.e., ligand or substrate, and the median effective
ligand concentration ED50 or apparent Km = EC50 = ED50 is required,
b) data are a decreasing function of an inhibitor [I] at fixed substrate concentration [S] and IC50, the
concentration of inhibitor giving half maximal inhibition, is required, or
c) the flux of labeled substrate [Hot], say, is measured as a decreasing function of unlabeled isotope
[Cold], say, with [Hot] held fixed.
If the data are for an increasing saturation curve and ligand binding models are required, then hlfit or,
if cooperative effects are present, sffit can be used to fit one or two binding site models.

More often, however, an enzyme kinetic model, such as the Michaelis-Menten equation will be used
as now described. To estimate the maximum rate and apparent Km , i.e., EC50 the equation fitted by
mmfit in substrate mode would be

v([S]) =
Vmax [S]
Km + [S]

while the interpretation of IC50 for a reversible inhibitor at concentration [i] with substrate fixed at
concentration S would depend on the model assumed as follows.
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Competitive inhibition v([I]) =
Vmax [S]

Km (1 + I/Ki ) + [S]

IC50 =
Ki (Km + [S])

Km

Uncompetitive inhibition v([I]) =
Vmax [S]

Km + [S](1 + [I]/Ki]

IC50 =
Ki (Km + [S])

[S]

Noncompetitive inhibition v([I]) =
Vmax [S]

(1 + [I]/Ki )(Km + [S])
IC50 = Ki

Mixed inhibition v([I]) =
Vmax [S]

K (1 + [I]/Ki1) + [S](1 + [I]/Ki2)

IC50 =
Ki1Ki2(Km + [S])
(KmKi2 + [S]Ki1)

Isotope displacement v([Cold]) =
Vmax [Hot]

Km + [Hot] + [Cold]
IC50 = Km + [Hot]

Of course, only two independent parameters can be estimated with these models, and, if higher order
models are required and justified by statistics and graphical deconvolution, the apparent Vmax and
apparent Km are then estimated numerically.

• Growth curves
If the data are in the form of sigmoidal increase, and maximum size, maximum growth rate, minimum
growth rate, t1/2 time to half maximum size, etc. are required, then use gcfit in growth curve mode.
For instance, with the logistic model

f (t) =
A

1 + B exp(−kt)

t1/2 =
log(B)

k
the maximum size A and time to reach half maximal size t/2 are estimated.

• Survival curves
If the data are independent estimates of fractions remaining as a function of time or some effector, i.e.
sigmoidally decreasing profiles fitted by gcfit in mode 2, and t1/2 is required, then normalize the data
to proportions of time zero values and use gcfit in survival curve mode 2. The Weibull model

S(t) = 1 − exp(−(At)B)

t1/2 =
log(2)

AB
.

is very useful.

• Survival time models
If the data are in the form of times to failure, possibly censored, then gcfit should be used in survival
time mode 3. With survival time models the median survival time t1/2 is estimated, where∫ t1/2

0
fT (t) dt =

1
2
,

and fT (t) is the survival probability density function.
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• Models for proportions
If the data are in the form of numbers of successes (or failures) in groups of known size as a function
of some control variable and you wish to estimate percentiles, e.g., EC50, IC50, or maybe LD50 (the
median dose for survival in toxicity tests), use gcfit in GLM dose response mode. This is because the
error distribution is binomial, so generalized linear models should be used. You should

95% confidence regions in inverse prediction

polnom estimates non-symmetrical confidence limits assuming that the N values of y for inverse prediction
and weights supplied for weighting are exact, and that the model fitted has n parameters that are justified
statistically. calcurve uses the weights supplied, or the estimated coefficient of variation, to fit confidence
envelope splines either side of the best fit spline, by employing an empirical technique developed by simula-
tion studies. Root finding is employed to locate the intersection of the yi supplied with the envelopes. The
AUC, LD50, half-saturation, asymptote and other inverse predictions in SimFIT use a t distribution with N−n
degrees of freedom, and the variance-covariance matrix estimated from the regression. That is, assuming a
prediction parameter defined by p = f (θ1, θ2, . . . , θn ), a central 95% confidence region is constructed using
the prediction parameter variance estimated by the propagation of errors formula

V̂ (p) =
n∑
i=1

(
∂ f
∂θi

)2

V̂ (θi ) + 2
n∑
i=2

i−1∑
j=1

∂ f
∂θi

∂ f
∂θ j

ĈV (θi, θ j ).

Note that this formula for the propagation of errors can be used to calculate parameter standard errors for
parameters that are calculated as functions of parameters that have been estimated by fitting, such as apparent
maximal velocity when fitting sums of Michaelis-Menten functions. However, such estimated standard errors
will only be very approximate.
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