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1 Introduction

This document is a simple introduction to the principles that form the basis for all data

analysis and is intended as a preparation for using SimFIT for both simple routine statistics

and graph plotting as well as advanced analysis in such areas as nonlinear model fitting,

calibration, multivariate methods, smoothing, survival analysis, generalized linear model-

ing, etc. It presumes that users are not prepared to use data analysis uncritically by using

recommended techniques and blindly accepting the results reported, but is intended for

those who are not content until they understand the theoretical principles on which the

technique they are using are based.

Data analysis involves using a computer program to calculate parameters from a data set

in order to summarise the contents of that set, usually to accept or reject the validity of a

hypothesis or to compare alternative mathematical models that could be used to explain the

data. The SimFIT package provides a large number of data analysis techniques and this

document only deals with the basic knowledge required to interpret data sets intelligently.

This is how to use SimFIT.

1. Select the program to be used from the appropriate drop down menu or the [A/Z]

option listing all programs in alphabetical order.

2. Read the option to provide more information about use of the program chosen.

3. When asked to provide data the user–friendly programs provide a selected test data

set so you can see what happens with correctly formatted data before inputting your

own data. The advanced programs such as qnfit , deqsol , or usermod require more

knowledge from users, but all programs offer appropriate selected test data sets by

choosing the [Demo] button on the file open dialog.

4. All the results that are calculated are added to a results file that can be accessed

retrospectively for saving or copying tables for inclusion into documents.

5. The [Tutorials] button offers a list of worked example, the [Examples] button collects

all the tutorials together with an index, while the [Manual] button opens the SimFIT

reference manual which contains mathematical and statistical details for all SimFIT

procedures.

1.1 Types of data

There are two distinct types of data, either integers resulting from a counting process or

floating point numbers resulting from measurements, but many data sets will consist of a

mixture of types. However, all types will have associated integers such as the number of

observations in the set. For instance a data set could consist of of observations of the room

temperature measured hourly throughout a day which would consist of 24 values that could

be plotted to summarise the variation.

1.2 Representation of numbers by computers

Integers, say =, occur somewhere in a finite set with a minimum and maximum value, e.g.
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8 . . . < = − 2 < = − 1 < = < = + 1 < = + 2 . . . < 9

where the numbers are stored exactly within the limits 8 and 9 set by the operating system.

If two integers are multiplied together to generate a number greater than : there will be a

computer error unless the programmer has included code to trap that error. If two numbers

are divided in such a way that a non-integer will result then either truncation will occur or

a floating point number may result, e.g.

6/3 = 2 but 1/2 = 0 or 1/2 = 0.5

depending on how the program was compiled.

Floating point numbers, say G, contain a decimal point and, although there is an upper and

lower limit, there is the problem that between any two non–identical decimal numbers there

exist an infinite number between them. So the problem of truncating floating numbers to

limit the number of significant digits has to be considered given that numbers have to be

represented to the user in a form to be easily understood and incorporated in documents.

To surmount this problem computer programs were designed to output numbers in scientific,

i.e, exponential format where the symbol E is used to indicate multiplication by a scaling

factor in powers of ten. For instance

123456.123456 = 1.23456123456E+06

0.000000123456123456 = 1.23456123456E-06

where orders of magnitude can be seen at a glance and tables would be aligned at the decimal

points. Using the convention that the number of significant figures would be the number of

non-zero digits in the scientific notation after deleting trailing zeros both of these numbers

would have 12 significant figures which is approaching the maximum allowed depending

on the operating system and the maximum realistically required to represent experimental

data.

Now calculations on computers would normally be computed in up to 15 significant figures

but the parameters calculated should have no more significant figures than the data. So the

default in SimFIT is 6 significant digits for numbers in standard notation but swapping over

to scientific notation for very large or very small numbers. However users can alter the

number of significant digits or choose six significant figures in scientific notation.

2 Visual analysis of data

The visual analysis of data is widely used and the reason for this is the belief that patterns

can be discerned from plotting the distribution of relatively small sample sizes. This is

especially so with life science studies or where the sample sizes are small due to expense or

the inability to obtain sufficient data. The next two examples are intended to warn against

relying on conclusions resulting from the visualisation of small samples.
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2.1 Simulating a normal distribution

A sample of pseudo–random numbers can be generated using program rannum after

selecting the distribution, parameters required, and sample size. For instance, selecting

[Simulate] from the main SimFIT menu, then choosing to simulate a normal distribution

with ` = 0 and f2
= 1 for sample sizes of 10, 20, 40, and 80 created four vector files. These

were then analyzed by program normal leading to the histograms shown below.
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In these histograms we can see that a sample size of ten generates a sample that bears little

comparison to the theoretical distribution shown as a dotted curve. Even a sample size

of twenty does not look convincingly like the theoretical distribution and a sample size

of eighty is required before the histogram does really suggest the theoretical distribution.

Of course this is merely a warning not to the use the shape of a histogram to suggest the

parent distribution unless the sample size is sufficiently large, and in any case the shape of

histograms depend on the number of bins used and are therefore to a degree arbitrary. Of

course program normal provides many graphical and statistical techniques to determine if

a sample can be regarded as coming from a normal distribution.

2.2 Minimum sample size

It is often advised that a minimum sample size of = = 20 is required to test if a sample is

consistent with an assumed distribution and, although statistical tests like the above can be

employed, decisions are more often made by visual inspection of a histogram. Now in the

limit of very large samples with many bins histograms do converge in shape to the population

distribution. However the next examples are intended to demonstrate that, in reality, sample
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sizes much greater than = = 20 are required to carry conviction. The * (0, 1) distribution

is particularly suited for this purpose as the histogram should have every bin frequency of

approximately the same size, since the probability density function is a horizontal line.

The following histograms display four consecutive simulations using program rannum ,

and note that the usual advice is to have an expected value of at least 5, and preferably an

observed value of the same order, for each bin. Of course, a major failing of analysis based

on histograms is that the visual appearance and results from statistical analysis depend on

the number of bins chosen.
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It will be clear from these results that a sample size of = = 20 is insufficient and could easily

lead to false conclusions, as the histogram can suggest almost any shape for the population

distribution. Increasing the sample size to = = 50 can still appear to be rather low as will

be clear from the next four successive simulations.
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Actually numerical results concerning the sample size required can be obtained from the

SimFIT section on power as a function of sample size. Meanwhile here is the sort of

convincing result obtained with large samples, in the next case = = 10000.
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In special cases the power as a function of sample size can be calculated by SimFIT if the

distribution and parameter values is known.

3 Statistical analysis of data

It is often the case that data samples are analysed by statistical methods in order to be less

subjective but, in order to understand how to do this, an understanding of probability and

statistical theory is required. It is essential to understand that statistical analysis assumes

that a sample can be regarded as a set of random numbers from a defined distribution. If

an incorrect distribution is assumed then application of statistical analysis is likely to be

misleading.
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A distribution defines a probability ? where 0 ≤ ? ≤ 1 with an expectation � and variance

+ and where the sum of all possible ? is 1. Examples to illustrate this follow, and a list

of all the standard distributions used in data analysis is contained in the SimFIT reference

manual w_manual.pdf.

3.1 Discrete distributions

A discrete random variable - can have one of = possible values G1, G2, . . . , G= and has a mass

function 5- ≥ 0 and cumulative distribution function 0 ≤ �- ≤ 1 that define probability,

expectation, and variance by

%(- = G 9 ) = 5- (G 9 ), for 9 = 1, 2, . . . , =

= 0 otherwise

%(- ≤ G 9 ) =
9

∑

8=1

5- (G8)

1 =

=
∑

8=1

5- (G8)

� (6(-)) =
=

∑

8=1

6(G8) 5- (G8)

� (-) =
=

∑

8=1

G8 5 (G8)

+ (-) =
=

∑

8=1

(G8 − � (-))2 5- (G8)

= � (-2) − � (-)2.

3.1.1 Bernoulli distribution

A Bernoulli trial has only two possible outcomes, - = 1 or - = 0 with probabilities ? and

@ = 1 − ?.

%(- = :) = ?:@1−: for : = 0 or : = 1

� (-) = ?
+ (-) = ?@

3.1.2 Binomial distribution

This models the case of = independent Bernoulli trials with probability of success (i.e.

G8 = 1) equal to ? and failure (i.e. G8 = 0) equal to @ = 1− ?. The random binomial variable

(= is defined as the sum of the = values of G8 without regard to order, i.e. the number of
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successes in = trials.

(= =

=
∑

8=1

G8

%((= = :) =
(

=

:

)

?: (1 − ?)=−: , for : = 0, 1, 2, . . . , =

� ((=) = =?
+ ((=) = =?(1 − ?)

The run test, sign test, analysis of proportions, and many methods for analyzing experiments

with only two possible outcomes are based on the binomial distribution.

3.1.3 Example: application of a binomial distribution

In the case where tossing a coin has only two possible outcomes, say heads when G8 = 1 and

tails when G8 = 0 then we can calculate the probability of all possible outcomes in a given

number of trials, say = = 6 and ? = 0.5 using program binomial .

Current binomial parameters: N = 6, p = 0.5

x pmf(x)

0 0.015625

1 0.093750

2 0.234375

3 0.312500

4 0.234375

5 0.093750

6 0.015625

From this we see that extreme values of 0 or 6 could not provide support for rejecting

�0 : ? = 0.5 at the 1% level. Experimenters should perhaps consider this when using

sample sizes of say ≤ 6 rats or cultures are often used in pilot biological studies.

3.1.4 The Poisson distribution

This is the limiting form of the binomial distribution for large = and small ? but finite

=? = _ > 0.

%(- = :) = _:

:!
exp(−_), for G = 0, 1, 2, . . . ,

� (-) = _
+ (-) = _

The limiting result, for fixed =? > 0, that

lim
=→∞

(

=

:

)

?: (1 − ?)=−: = (=?):
:!

exp(−=?)

can be used to support the hypothesis that counting is a Poisson process, as in the distribution

of bacteria in an sample, so that the error is of the order of the square root of the mean. The
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Poisson distribution also arises from Poisson processes, like radioactive decay, where the

probability of : events which occur at a rate _ per unit time is

%(: events in (0, C)) = (_C):
:!

exp(−_C).

The Poisson distribution has the additive property that, given = independent Poisson vari-

ables -8 with parameters _8, the sum . =
∑=
8=1 -8 has a Poisson distribution with parameter

_H =
∑=
8=1 _8.

3.2 Continuous distributions

A continuous random variable - is defined over some range by a probability density

function 5- ≥ 0 and cumulative distribution function 0 ≤ �- ≤ 1 that define probability,

expectation, and variance by

�- (G) =
∫ G

−∞
5- (C) 3C

%(� ≤ G ≤ �) = �G (�) − �- (�)

=

∫ �

�

5- (C) 3C

1 =

∫ ∞

−∞
5- (C) 3C

� (6(-)) =
∫ ∞

−∞
6(C) 5- (C) 3C

� (-) =
∫ ∞

−∞
C 5- (C) 3C

+ (-) =
∫ ∞

−∞
(C − � (-))2 5- (C) 3C.

In the context of survival analysis, the random survival time - ≥ 0, with density 5 (G),
cumulative distribution function � (G), survivor function ((G), hazard function ℎ(G), and

integrated hazard function � (G) are defined by

((G) = 1 − � (G)
ℎ(G) = 5 (G)/((G)

� (G) =
∫ G

0

ℎ(D) 3D

5 (G) = ℎ(G) exp{−� (G)}.

3.2.1 Uniform distribution

This assumes that every value is equally likely for � ≤ - ≤ �, so that

5- (G) = 1/(� − �)
� (-) = (� + �)/2
+ (-) = (� + �)2/12.
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3.2.2 Normal (or Gaussian) distribution

This has mean ` and variance f2 as follows.

5- (G) =
1

f
√

2c
exp

(

− (G − `)2
2f2

)

� (-) = `
+ (-) = f2

Φ(I) = �- (I)

=
1

√
2c

∫ I

−∞
exp(−C2/2) 3C.

It is widely used in statistical modeling, e.g., the assumption of normally distributed dosage

tolerance leads to a probit regression model for the relationship between the probability

of death and dose. There are several important results concerning the normal distribution

which are heavily used in hypothesis testing.

3.2.3 Standardised normal variate

The standardised normal variate / defined as

/ =
- − `
f

where - is a normal variate with mean ` and variancef2 so that / has a normal distribution

with mean 0 and variance 1 is very important in data analysis, e.g, consider the following

derived distributions.

3.2.4 Chi-square distribution

The j2 distribution with a degrees of freedom results from adding together the squares of

a independent / variables.

j2(a) =
a

∑

8=1

I28 or, setting - = j2(a),

5- (G) =
1

2a/2Γ(a/2)
Ga/2−1 exp(−G/2)

� (-) = a
+ (-) = 2a.

It is the distribution of the sample variance from a normal distribution, and is widely used

in goodness of fit testing since, if = frequencies �8 are expected and = frequencies $8 are

observed, then

lim
=→∞

=
∑

8=1

($8 − �8)2
�8

= j2(a).

Here the degrees of freedom a is just = − 1 minus the number of extra parameters estimated

from the data to define the expected frequencies. Cochran’s theorem is another result of
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considerable importance in several areas of data analysis, e.g., the analysis of variance, and

this considers the situation where /1, /2, . . . , /= are independent standard normal variables

that can be written in the form

=
∑

8=1

/2
8 = &1 + &2 + · · · +&:

where each &8 is a sum of squares of linear combinations of the /8 . If the rank of each &8
is A8 and

= = A1 + A2 + · · · + A:

then the &8 have independent chi-square distributions, each with A8 degrees of freedom.

3.2.5 F distribution

The � distribution arises when a chi-square variable with a1 degrees of freedom (divided

by a1) is divided by another independent chi-square variable with a2 degrees of freedom

(divided by a2).

� (a1, a2) =
j2(a1)/a1

j2(a2)/a2

or, setting - = � (a1, a2),

5- (G) =
a
a1/2
1

a
a2/2
2

Γ((a1 + a2)/2)
Γ(a1/2)Γ(a2/2)

G (a1−2)/2(a1G + a2)−(a1+a2)/2

� (-) = a2/(a2 − 2) for a2 > 2.

The � distribution is used in the variance ratio tests and analysis of variance, where sums

of squares are partitioned into independent chi-square variables whose normalized ratios,

as described above, are tested for equality, etc. as variance ratios.

3.2.6 t distribution

The C distribution arises naturally as the distribution of the ratio of a normalized normal

variate / divided by the square root of a chi-square variable j2 divided by its degrees of

freedom a.

C (a) = /
√

j2(a)/a
, or setting - = C (a)

5- (G) =
Γ((a + 1)/2)
Γ(a/2)

√
ac

(

1 + G
2

a

)−(a+1)/2

� (-) = 0

+ (-) = a/(a − 2) for a > 2.

The use of the C test for testing for equality of means with two normal samples -1, and -2

with sizes =1 and =2 and the same variance, uses the fact that the sample means are normally
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distributed, while the sample variances are chi-square distributed, so that under �0,

/ =
Ḡ1 − Ḡ2

f
√

1/=1 + 1/=2

* =
=1B

2
1
+ =2B

2
2

f2(=1 + =2 − 2)
) = //

√
*

∼ C (=1 + =2 − 2)
)2 ∼ � (1, =1 + =2 − 2).

For the case of unequal variances the Welch approximation is used, where the above test

statistic) and degrees of freedom a calculated using a pooled variance estimate, are replaced

by

) =
Ḡ1 − Ḡ2

√

B2
1
/=1 + B22/=2

a =
(B2

1
/=1 + B22/=2)2

(B2
1
/=1)2/(=1 − 1) + (B2

2
/=2)2/(=2 − 1)

.

The paired C test uses the differences 38 = G8 − H8 between correlated variables - and . and

only assumes that the differences are normally distributed, so that the test statistic for the

null hypothesis is

3̄ =

=
∑

8=1

38/=

B23 =

=
∑

8=1

(38 − 3̄)2/(= − 1)

) = 3̄
/

√

B2
3̄
/=.

3.2.7 Example 1. Sums of normal variables

Given = independent random variables -8 ∼ # (`8, f2
8
), then the linear combination . =

∑=
8=1 08-8 is normally distributed with parameters `H =

∑=
8=1 08`8 and f2

H =
∑=
8=1 0

2
8 f

2
8 .

3.2.8 Example 2. Convergence of a binomial to a normal distribution

If (= is the sum of = Bernoulli variables that can be 1 with probability ?, and 0 with

probability 1 − ?, then (= is binomially distributed and, by the central limit theorem, it is

asymptotically normal in the sense that

lim
=→∞

%

(

(= − =?
√

=?(1 − ?)
≤ I

)

= Φ(I).

The argument that experimental error is the sum of many errors that are equally likely to

be positive or negative can be used, along with the above result, to support the view that

experimental error is often approximately normally distributed.
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3.2.9 Example 3. Distribution of a normal sample mean and variance

If - ∼ # (`, f2) and from a sample of size = the sample mean

Ḡ =

=
∑

8=1

G8/=

and the sample variance

(2
=

=
∑

8=1

(G8 − Ḡ)2/=

are calculated, then

(a) -̄ ∼ # (`, f2/=);
(b) =(2/f2 ∼ j2(= − 1), � ((2) = (= − 1)f2/=, + ((2) = 2(= − 1)f4/=2; and

(c) -̄ and (2 are stochastically independent.

3.2.10 Example 4. The Gauss central limit theorem

If independent random variables -8 have mean ` and variance f2 from some distribution,

then the sum (= =
∑=
8=1 -8 , suitably normalized, is asymptotically normal, that is

lim
=→∞

%

(

(= − =`
f
√
=

≤ I

)

= Φ(I), or

%(-1 + -2 + · · · + -= ≤ H) ≈ Φ

(

H − =`
f
√
=

)

.

Under appropriate restrictions, even the need for identical distributions can be relaxed.

3.2.11 The use of a normal distribution in statistics

Because the normal distributions includes the possibility −∞ ≤ G ≤ ∞ then no possible

sample of observations can actually be normally distributed. For example, blood pressure,

height and weight cannot be negative or infinite. The value arises because many observations

obey a normal distribution sufficiently closely or can be transformed into new variables that

are more approximately normal.

4 Estimation of parameters

Given a sample - = G1 + G2 + . . . + G= of size = then it is useful to be able to calculate a

small subset of derived numbers in order to summarise the properties of the data set. For

instance the average Ḡ or sample mean can always be calculate using

Ḡ =
G1 + G2 + . . . + G=

=

or, using the more convenient mathematical notation for a sum,

Ḡ =
1

=

=
∑

8=1

G8 .
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As calculated this expression for Ḡ has the unambiguous interpretation of meaning that the

result of adding the = individual numbers G8 together is the same as multiplying the average

by =. However, using this value as an estimate for the value of the mean, i.e., the expected

value of a probability distribution, i.e. the theoretical mean, requires further assumptions.

Similarly the sample variance ( or sample standard deviation i.e. standard error B can

always be calculated using

( =
1

= − 1

=−1
∑

8=1

(Ḡ − G8)2

B =
√
(

and this clearly represents a measure of the spread of the data around the mean value. Note

that in this expression for ( the factor 1/(=−1) is used for an unbiased estimate because one

degree of freedom has been used as the calculation involves the previously calculated Ḡ in

case the value is used for inferences about the population variance and population standard

deviation.

4.1 Confidence limits for a binomial parameter

For : successes in = trials, the binomial parameter estimate ?̂ is :/= and three methods are

used to calculate confidence limits ?1 and ?2 so that

=
∑

G=:

(

=

G

)

?G1(1 − ?1)=−G = U/2,

and

:
∑

G=0

(

=

G

)

?G2(1 − ?2)=−G = U/2.

❍ If max(:, = − :) < 106, the lower tail probabilities of the beta distribution are used

as follows

?1 = V:,=−:+1,U/2,

and ?2 = V:+1,=−:,1−U/2.

❍ If max(:, = − :) ≥ 106 and min(:, = − :) ≤ 1000, the Poisson approximation with

_ = =? and the chi-square distribution are used, leading to

?1 =
1

2=
j2

2:,U/2,

and ?2 =
1

2=
j2

2:+2,1−U/2.

❍ If max(:, = − :) > 106 and min(:, = − :) > 1000, the normal approximation with

mean =? and variance =?(1 − ?) is used, along with the lower tail normal deviates

14



/1−U/2 and /U/2, to obtain approximate confidence limits by solving

: − =?1
√

=?1(1 − ?1)
= /1−U/2,

and
: − =?2

√

=?2(1 − ?2)
= /U/2.

The following very approximate rule-of-thumb can be used in counting situations to get a

quick idea of the range of a binomial mean =? when = is large and ? small by exploiting

the fact that the binomial variance variance equals =?(1 − ?) while the Poisson variance

equals the mean

%(G − 2
√
G ≤ =? ≤ G + 2

√
G) ≈ 0.95

where 0 ≤ G ≤ = is a binomial sample such as the number of successes in = trials.

Example:In a study the number of deaths among pensioners in a six year period were as

follows.

Sample size Deaths Probability 95% confidence interval

Non-smokers 1067 117 0.109653 0.091533 ≤ ? ≤ 0.129957

Smokers 402 54 0.134328 0.102548 ≤ ? ≤ 0.171609

Again, note the noncentral 95% confidence intervals for the probability estimates ?̂ as

summarized below.

Deaths/Subjects ?̂ 95% Confidence Interval Group

117/1067 0.1097 0.1097 - 0.0182, 0.1097 + 0.0203 Non-smokers

54/402 0.1343 0.1343 - 0.0318, 0.1343 + 0.0373 Smokers

4.2 Confidence limits for a normal mean and variance

If the sample mean is Ḡ, and the sample variance is B2, with a sample of size = from a normal

distribution having mean ` and variance f2, the confidence limits are defined by

%(Ḡ − CU/2,=−1B/
√
= ≤ ` ≤ Ḡ + CU/2,=−1B/

√
=) = 1 − U,

and %((= − 1)B2/j2
U/2,=−1 ≤ f2 ≤ (= − 1)B2/j1−U/2,=−1) = 1 − U

where the upper tail probabilities of the C and chi-square distribution are used.

Example: we can use the body temperature of 25 intertidal crabs recorded in ℃ as follows:

24.3, 25.8, 24.6, 26.1, 22.9, 25.1, 27.3, 24.0, 24.5, 23.9, 26.2, 24.3, 24.6, 23.3, 25.5, 28.1,

24.8, 23.5, 26.3, 25.4, 25.5, 23.9, 27.0, 24.8, 22.9, 25.4. The sample mean, variance and

standard deviation were Ḡ = 25.03, B2 = 1.8, and B = 1.3416408 leading to the following

central confidence intervals for the mean and unsymmetrical confidence limits for the

variance.
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Sample size Level Parameter Estimate Interval

25 95% Mean 25.03 24.4762 ≤ ` ≤ 25.5838

25 99% Mean 25.03 24.2795 ≤ ` ≤ 25.7805

25 95% Variance 1.8 1.09745 ≤ f2 ≤ 3.48355

25 99% Variance 1.8 0.948231 ≤ f2 ≤ 4.36971

Note that the mean and 95% confidence confidence can be written as 25.03(±0.5538) but

because of the unsymmetrical confidence this type of shorthand cannot be used for the

variance. In fact, as just seen with the binomial distribution, the normal distribution is fairly

unique in this respect and displaying the confidence limits in this way will usually only be

an approximation.

4.3 Hypothesis testing and power

Hypothesis testing is based upon specifying a null hypothesis �0 then testing to see if a

statistic calculated from the data is sufficiently extreme to justify rejecting the null hypoth-

esis. There are two possible errors.

• Type I error

The null hypothesis is rejected when it is true and the probability of this happening

is U.

• Type II error

The null hypothesis is accepted when it is false and the probability of this happening

is V.

The significance level is U while the power is 1 − V, often expressed as a percentage. The

situation can be summarized in the following table.

Decision �0 is true �0 is false

Reject �0 Type I error Correct

U 1 − V
Accept �0 Correct Type II error

1 − U V

4.4 Power and sample size

Calculations related to power as a function of sample size can be performed as long as

the statistical distributions and parameters required for the null hypothesis are correct and

specified. Unfortunately, while calculation of U is straightforward, calculation of V requires

that an alternative hypothesis �1 be specified and can be much more difficult.

If 5 (G) is the density function for a random variable - , then the null and alternative

hypotheses can sometimes be expressed as

�0 : 5 (G) = 50(G)
�1 : 5 (G) = 51(G)
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while the error sizes, given a critical region �, are

U = %�0
(reject �0) (i.e., the Type I error)

=

∫

�

50(G) 3G

V = %�1
(accept �0) (i.e., the Type II error)

= 1 −
∫

�

51(G) 3G.

Usually U is referred to as the significance level, V is the operating characteristic, while

1 − V is the power, frequently expressed as a percentage, i.e., 100(1 − V)%, and these will

both alter as the critical region is changed.
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This figure illustrates the concepts of signal-to-noise ratio, significance level, and power.

The family of curves on the left are the probability density functions for the distribution of

the sample mean Ḡ from a normal distribution with mean ` = 0 and variance f2
= 1. The

curves on the right illustrate the significance level U, and operating characteristic V for the

null and alternative hypotheses

�0 : ` = 0, f2
= 4

�1 : ` = 1, f2
= 4

for a test using the sample mean from a sample of size = = 25 from a normal distribution,

with a critical point � = 0.4. The significance level is the area under the curve for �0 to

the right of the critical point, while the operating characteristic is the area under the curve

for �1 to the left of the critical point. Clearly, increasing the critical value � will decrease

U and increase V, while increasing the sample size = will decrease both U and V.

5 Regression

The use of regression is based on the assumption that, when a series of = observations H8 are

made as a function of some variables - = G1, G2, . . . , G 9 , then there is a function � (-,Θ)
involving parameters Θ = \1, \2, . . . , \: such that there is a relationship

H8 = � (-8,Θ) + n8
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where n8 is the experimental error or natural variation. Then the residuals A8 defined as

A8 = H8 − � (-8,Θ)

represent the errors and it is required to define a model equation � (-,Θ) then estimate the

best–fit parameters Θ̂.

5.1 Linear and nonlinear models

A linear model is one where the parameters occur linearly. For instance

H = <G + 2
H = 11G1 + 12G2 + . . . + 1 9G 9
H = 00 + 01G + 02G

2 + . . . 0:G:

that is, a straight line, a multiliear equation or a polynomial. Such equations are easy to fit.

Typical nonlinear models would be

E =
+<0G(

 < + (
� (C) = �4−:C

and such models are difficult to fit so that, before the computer age, they could only be fitted

using linearising transformations such as double reciprocal plots or logs.

5.2 Weighting

The idea of weighting is to give more importance to more accurate observations. Where the

range of H8 is small it is reasonable to assume that B28 the variance of H8 will be approximately

constant and weighting is not required. However, in a sequence of values where there is

a large range of H8 values it will be the case that large values will have a larger variance

than small values and if this is not taken into account the regression will be dominated by

large values leading to biased parameter estimates. It would require a very large sample of

replicates to estimate the variances B28 accurately so there are several options.

1. Undertake an independent estimate of the variance of H8 as a function of the magnitude

of G8 leading to a predictive formula.

2. If the sample size at each replicate G8 is at least 5 the sample variance at that G8 value

could be used as an attempt to smooth out the size differences.

3. Assume constant relative error and use an assumed fraction of the H8 values.

4. Use an assumed fraction of the the best–fit model at each fixed G8, which does mean

that the weights change with each iteration.
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Given a sample of = observations H8 with anticipated error n8 > 0 with : ≥ 1 independent,

i.e. relatively error–free, variables -8 = G18, G28, . . . , G:8 and a theoretical model 5 (-) with

< parameters ?1, ?2, . . . , ?<, it is recommended to find the best–fit model parameters ?̂8
in order to summarise a data set in terms of a small number of estimated parameters with

confidence limits. The method of maximum likelihood suggests that parameter estimates

should be chosen to minimise the weighted sum of squared residuals,((& given by

,((& =

=
∑

8=1

F8 (H8 − 5 (G18, G28, . . . , G=8 | ?1, ?2, . . . , ?<)2

where the weights are F8 = 1/B28 . Actually most meaningful models are nonlinear, weights

are seldom known with any accuracy and such minimisation requires non–linear optimisa-

tion and well–defined starting parameter estimates which can give non–unique results due

to failure to converge to a unique minimum. Not surprisingly, because of such difficulties,

this approach is seldom used and simpler but more unrealistic regression is resorted to.

5.3 Linear regression

From the main SimFIT menu choose the [A/Z] option, open program linfit , choose [mul-

tilinear regression] using least squares, then browse the default test file linfit.tf2 which

contains the following data set.

G1 G2 G3 G4 H B

7.00 26.0 6.00 60.0 78.50 1

1.00 29.0 15.0 52.0 74.30 1

11.0 56.0 8.00 20.0 104.3 1

11.0 31.0 8.00 47.0 87.60 1

7.00 52.0 6.00 33.0 95.90 1

11.0 55.0 9.00 22.0 109.2 1

3.00 71.0 17.0 6.00 102.7 1

1.00 31.0 22.0 44.0 72.50 1

2.00 54.0 18.0 22.0 93.10 1

21.0 47.0 4.00 26.0 115.9 1

1.00 40.0 23.0 34.0 83.80 1

11.0 66.0 9.00 12.0 113.3 1

10.0 68.0 8.00 12.0 109.4 1

Note that the weighting factor B must be supplied as the last column so that SimFIT knows

how many variables are present. It is usual to set all the values of B to one as in the above

example, but if accurate estimates for the standard deviations of . are known these could

be used so that weighted least squares fitting can be done.

Analysis of these data then leads to the following table of results using this model

H = V0G0 + V1G1 + V2G2 + V3G3 + V4G4

where G0 = 1 if V0 is to be estimated and a constant term is required, or V0 = 0 otherwise.
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Parameter Estimates

Number of parameters: 5, Rank: 5, Number of points: 13, Degrees of freedom: 8

Residual-((&: 47.864, Mallows’ �? : 5.0, '2: 0.9824

Parameter Value Lower95%cl Upper95%cl Std. Error p

V0 (Constant) 62.405 -99.179 223.99 70.071 0.3991 ***

V1 1.5511 -0.16634 3.2685 0.74477 0.0708 *

V2 0.51017 -1.1589 2.1792 0.72379 0.5009 ***

V3 0.10191 -1.6385 1.8423 0.75471 0.8959 ***

V4 -0.14406 -1.7791 1.4910 0.70905 0.8441 ***

The stars shown against the parameter estimates in Table 1 are displayed when the parameter

estimates are not significantly different from zero, so this table indicates that none of the five

parameters were well determined. This will normally be followed by selecting sub–groups

of variables until a set is obtained where all parameters are significantly different from zero

5.4 Nonlinear regression

This technique demands a knowledge of the principles of constrained nonlinear optimisation

and should only be employed if users appreciate the need for several additional steps if a

meaningful analysis is to be achieved.

1. The data should be very accurate and extend over the full range necessary to make

sure all parameters are making contributions to the fit.

2. There must be good independent evidence that the model selected is a good choice

for the type of data being fitted.

3. Parameter limits must be in order, i.e., lower limit ≤ starting estimate ≤ upper limit.

As an example consider using SimFIT program qnfit to fit a mixture of three normal distri-

butions with scaling factors and a possible background constant to the data set gauss3.tf1

using the model

?35= (G) =
?1

?2=+1

√
2c

exp

(

−1

2

{

G − ?=+1

?2=+1

}2
)

+ ?2

?2=+2

√
2c

exp

(

−1

2

{

G − ?=+2

?2=+2

}2
)

+ · · ·

+ ?=

?3=

√
2c

exp

(

−1

2

{

G − ?2=

?3=

}2
)

+ ?3=+1.

For a sum of = such sub–models then up to 3= + 1 parameters have to be estimated, namely

• ?1, ?2, . . . , ?= are positive partitioning fractions, which may be constrained, e.g.,
∑=
8=1 ?8 = 1

• ?=+1, ?=+2, . . . , ?2= are means of arbitrary sign,

• ?2=+1, ?2=+2, . . . , ?3= are positive standard deviations, and

• ?3=+1 is an arbitrary background correction factor that is sometimes required.

The best–fit parameters are displayed next.
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Best-fit parameters for 3 Gaussians using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 0.0 2.0 0.90754 0.021624 0.86479 0.95029 0.0000

2 0.0 2.0 1.16433 0.042173 1.08096 1.24770 0.0000

3 0.0 2.0 0.92519 0.030130 0.86562 0.98475 0.0000

4 -2.0 2.0 -0.07298 0.015572 -0.10376 -0.04219 0.0000

5 2.0 6.0 3.74510 0.050816 3.64464 3.84556 0.0000

6 8.0 12 10.2774 0.096413 10.0868 10.4680 0.0000

7 0.1 2.0 0.92640 0.014331 0.89807 0.95474 0.0000

8 1.0 3.0 2.34330 0.070567 2.20380 2.48281 0.0000

9 2.0 4.0 2.76906 0.062637 2.64523 2.89289 0.0000

parameter(10) is the excluded constant term

For 50,90,95,99% con. lim. using [parameter value +/- t(U/2)*std.err.]

t(.25) = 0.676, t(.05) = 1.656, t(.025) = 1.977, t(.005) = 2.611

The next graph shows a graphical deconvolution of the fit, that is displaying the three

Gaussians along with the overall fit, which is a good way to estimate the contributions of

the separate components. This is followed by the replicates replaced by the means together

with the calculated error bars which can be done by program qnfit .
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