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When accurate initial rate data are obtained over an extended range of substrate concentration then deviations
from Michaelis-Menten kinetics such as substrate inhibition, substrate activation, sigmoidicity, and other
types of cooperativity are often encountered. If artifacts such as aggregation, failing to correct for pH or ionic
strength, etc. are not responsible, then the appropriate model would be positive rational function. The most
important thing is to determine the degree of such a rational function, because this can be used to select a
possible kinetic scheme and rate equation.

From the main SimFIT menu select [A/Z], then open program rffit and study the default test file rffit.tf6
which has the following data set.

S v(S) se(v)
0.01000 0.02100 0.00157
0.01624 0.03409 0.00256
0.02637 0.05533 0.00415
0.04281 0.08975 0.00673
0.06952 0.14532 0.01090
0.11288 0.23421 0.01757
0.18330 0.37301 0.02798
0.29764 0.57659 0.04324
0.48329 0.83187 0.06239
0.78476 1.04968 0.07873
1.27427 1.09824 0.08237
2.06914 0.98829 0.07412
3.35982 0.87359 0.06552
5.45559 0.86246 0.06468
8.85867 0.96350 0.07226
14.38450 1.08641 0.08148
23.35721 1.07355 0.08052
37.92690 0.87789 0.06584
61.58482 0.62001 0.04650
100.00000 0.40461 0.03035

The columns contain data in the following format.

1. Column 1: the non–negative substrate concentration S which must be in non-decreasing order.

2. Column 2: the non–negative initial rate v(S) presumed to be dependent on substrate in column 1.

3. Column 3: the positive sample standard deviation of the replicate rate measurements.
This column can be omitted or set to 1 if unweighted regression is required.

SimFIT program rffit fits positive rational functions of the following form

v(S) =
α0 + α1S + α2S2 + · · · + αnSn

β0 + β1S + β2S2 + · · · + βnSn

which will be referred to as a n:n function. This has 2n+1 independent nonnegative parameters αi ≥ 0, βi ≥ 0
so we define β0 = 1. In addition, it is is usually the case that α0 = 0 so that v(0) = 0 and, if dead-end enzyme-
substrate complexes are assumed, it will also be convenient to set αn = 0 to model the case where v(∞) = 0.
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Some observations on curve fitting n:n functions

Program rffit scales the data provided into internal coordinates and, by default, sets all parameters to one or
to user-supplied values. For very difficult problems with widely spaced parameters, the program can estimate
approximate starting parameters from the extremes of the data set, undertake a random search in an attempt
to improve these, then perform a preliminary fit in the constrained L1 to refine the starting estimates. It scales
the model fitted so that the internal parameters will be of order unity at the start of the optimization, then
performs weighted nonlinear regression by the quasi-Newton method with parameters constrained to be non-
negative. Even so, it must be realized that distinguishing order 2 from order 1 will usually be straightforward,
distinguishing order 3 from order 2 will demand very accurate data over a wide range, and distinguishing
order 4 from order 3 will usually only succeed if the data have special features.

The test files

Many of the test files distributed with the SimFIT package contain exact data. There are two reasons for this.

1. Exact data sets generated by program makdat have known parameters so, by fitting these it is possible
to observe how accurately SimFIT can estimate the known parameters.

2. Such exact data sets can be corrupted by adding random error using program adderr to simulate exper-
imental data.

The recommended procedure for analyzing your own data is to simulate using the suspected model and an-
ticipated error, then fit to see how likely it will be for the fitting program to support your working hypothesis.

Example 1

In particular rffit.tf6 contains exact data for a 4:4 rational function, and fitting 3:3 then 4:4 yields these
parameter estimates.

Number Parameter Value Std. Error Lower95%cl Upper95%cl p
1 α0 1.0982E-05 6.0976E-06 -2.4385E-06 2.4403E-05 0.0991 *
2 α1 2.0997E+00 3.8507E-04 2.0988E+00 2.1005E+00 0.0000
3 α2 2.4562E-04 1.4423E-03 -2.9289E-03 3.4201E-03 0.8679 *
4 α3 1.0493E-01 7.4973E-05 1.0476E-01 1.0509E-01 0.0000
5 α4 1.0982E-13 9.3838E-08 -2.0654E-07 2.0654E-07 1.0000 *
6 β1 4.0251E-04 7.3125E-04 -1.2070E-03 2.0120E-03 0.5930 *
7 β2 1.0022E+00 1.5814E-03 9.9868E-01 1.0056E+00 0.0000
8 β3 1.0000E-11 1.2096E-05 -2.6623E-05 2.6623E-05 1.0000 *
9 β4 2.4982E-03 1.9153E-06 2.4940E-03 2.5024E-03 0.0000

Now this test data was generated as the sum of two dead-end substrate inhibition models namely

v(S) =
2S

1 + S2 +
0.1S

1 + 0.0025S2

=
2.1S + 0.105S3

1 + 1.0025S2 + 0.0025S4

so, pointing out that numbers less than about 10−4 of the largest parameter estimate are effectively zero, the
estimates are almost identical to the values used to generate the data, which supports the fact that program
rffit is capable of determining the parameters of a 4:4 function given highly accurate and extensive data. The
next table illustrates the strong support for the extra parameters in the 4:4 fit compared to the 3:3 fit, while the
graph illustrates the reason: a positive rational function of order n:n can have at most n − 1 positive turning
points so the 3:3 function can never model the three positive turning points of the 4:4 function.
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W SSQ-previous 7.8928E+01
W SSQ-current 7.2902E-05
Number of parameters-previous 7
Number of parameters-current 9
Number of S-values 20
Akaike AIC-previous 4.1456E+01
Akaike AIC-current -2.3244E+02 ER = 2.9947E+59
Schwarz SC-previous 4.8426E+01
Schwarz SC-current -2.2348E+02
Mallows Cp 1.1909E+07 Cp/M1 = 1.7013E+06
Numerator degrees of freedom 2
Denominator degrees of freedom 11
F test statistic (FS) 5.9546E+06
P(F ≥ FS) 0.0000
P(F ≤ FS) 1.0000
5% upper tail point 3.9823E+00
1% upper tail point 7.2057E+00

Conclusion based on F test
Reject previous model at 1% significance level
There is strong support for the extra parameters
Tentatively accept the current best fit model
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Note that the data are in a geometrical progression, that is, for k points xi distributed equally on a log scale
between end points A and B we would have x1 = A, x2 = λx1, x3 = λx2, . . . , xk = λxk−1 = λ

k−1x1 = B
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where λ = (B/A)1/(k−1) . When fitting models like saturation functions, exponentials, or rational functions, a
logarithmic scale is optimal for model discrimination and parameter determination [1].

Example 2

Test file rffit.tf7 was obtained from rffit.tf6 using adderr to generate triplicates with 7.5% relative
error and standard errors calculated from replicates. Using starting estimates equal equal to one, but with α0
and αn suppressed gives reasonable parameter estimates as shown by the next table and graph.

Number Parameter Value Std. Error Lower95%cl Upper95%cl p
2 α1 2.1330E+00 2.7697E-02 2.0775E+00 2.1886E+00 0.0000
3 α2 2.1863E-01 3.1074E-01 -4.0464E-01 8.4189E-01 0.4848 *
4 α3 1.0866E-01 2.0534E-02 6.7470E-02 1.4984E-01 0.0000
6 β1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000 f
7 β2 1.2320E+00 3.3648E-01 5.5711E-01 1.9069E+00 0.0006
8 β3 1.1784E-03 1.2893E-02 -2.4682E-02 2.7039E-02 0.9275 *
9 β4 2.5835E-03 3.5474E-04 1.8719E-03 3.2950E-03 0.0000
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In general for n:n functions with n > 2 the following conclusions should be noted.

1. The data must be very accurate and span a large range of substrate concentration.

2. Data should be collected using a geometric progression between end points.

3. Program rffit must be run many times to compare the fit with random starting estimates with the fit
from user-supplied starting estimates, or with all equal to one as with this example fitting rffit.tf7.

4. Model discrimination may work for n ≤ 3 but parameter estimates may be poor for n ≥ 3.
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Theory

All kinetic schemes that can be devised for non-aggregating enzymes that have zero rate at zero substrate
concentration lead to the following quasi steady state rate equation

v(S) =
α1S + α2S2 + · · · + αnSn

β0 + β1S + β2S2 + · · · + βnSn

where αi ≥ 0 and βi ≥ 0, and the only difference between models is the way that the coefficients αi, βi are
expressed as functions of the rate constants. Some simple facts about this function are as follows.

• The order n can be as large as the subscript k in any enzyme substrate complexes ESk .

• Given any order n with any nonnegative values for αi, βi it is possible to define a possible enzyme
scheme with these values [2].

• The v(S) curve is only sigmoidal if α2 β0 > α1 β1 [3].

• A order n positive rational function can have at most n− 1 turning points and 2n− 2 points of inflexion
in the first quadrant [4].

• If αn = 0 the v(S) curve descends asymptotically to zero from a final turning point.

• If αn > 0 the v(S) curve approaches a horizontal asymptote v(∞) = αn/βn .

• If αn > 0 the v(S) curve descends from a final turning point if αn βn−1 < αn−1 βn .

As the main idea in fitting such a rational function to experimental data is to fix a minimum order n to suggest
a possible enzyme mechanism, some facts about parameter estimation and discrimination should be noted.

• Any attempt to fit higher order models requires accurate data over a large range.

• Experimental points should have the S values in a geometric progression.

• Statistical techniques for model discrimination perform very well when distinguishing the case n = 2
from n = 1 but rapidly deteriorate for n > 2 [5],[6],[7].

• Fitting cases with n > 2 should be investigated by comparing the results with all starting estimates
equal to one with those from several random searches.

• When the order n has been decided and good starting estimates have been located it is time to use the
more advanced program qnfit.

Limiting cases

Before nonlinear regression became accepted as the only meaningful way to fit enzyme kinetic data, much use
was made of fitting straight lines to extreme substrate concentrations in order to estimate parameter values.
This has given rise to much confusion.

It might be thought that a satisfactory approximation to a n:n function at low substrate concentration would
be the 1:1 Michaelis-Menten function

v(S) =
α1S
β0 + β1S

.

However this cannot be sigmoidal and v(S) curves can be sigmoidal, so the best 1:1 function to approximate
low substrate values is

v(S) =
α2

1

α1 β0 + (α1 β1 − α2 β0)S
,

as this is the equation of the asymptotes approached at low substrate concentration in all the transformed plots
such as double-reciprocal, Scatchard, etc. used in enzyme kinetics [8].
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Irrespective of which technique is used to fit the data for low S the only parameters that can be estimated are
the apparent kinetic constants

Vmax = α
2
1/(α1 β1 − α2 β0), and Km = α1 β0/(α1 β1 − α2 β0).

Again, it might be thought that a satisfactory approximation to a n:n function at high substrate concentration
would be the n:n Hill equation

v(S) =
αnSn

β0 + βnSn
.

However v(S) curves can have turning points and the Hill equation is monotonic, so the best 1:1 function to
approximate high substrate values is

v(S) =
α2
n

(αn βn−1 − αn−1 βn ) + αn βnS
,

as this is the equation of the asymptotes approached at high substrate concentration in all the transformed
plots such as double-reciprocal, Scatchard, etc. used in enzyme kinetics [8].

Irrespective of which technique is used to fit the data for high S the only parameters that can be estimated are
the apparent kinetic constants

Vmax = αn/βn , and Km = (αn βn−1 − αn−1 βn )/(αn βn ).

Another issue concerns reduction in degree by cancelation of common factors between numerator and denom-
inator which can occur with some enzyme mechanisms containing cycles which, after using the principle of
microscopic reversibility, lead to zero values for one or more of the Sylvester eliminants [9]. In the extreme
case of factorization down to order 1:1, one possible expression for the reduced equation would be

v(S) =
α1αn

αn β0 + α1 βnS
.

To the extent that fitting a Michaelis-Menten equation to a n:n function is justified because statistical evidence
does not support n > 1 , the two parameters that can be estimated are the apparent kinetic constants

Vmax = αn/βn , and Km = αn β0/(α1 β1).

Sigmoidicity

A positive rational function will be sigmoid if

α2 β
2
0 − α1 β0 β1 − α0 β0 β2 + α0 β

2
1 > 0,

but in the usual case α0 = 0 it is possible to define satisfactory measures of sigmoidicity, which can be
explained by reference to the next figure [10].
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The point labeled C is the first positive root of

S(dv/dS) − v = 0

and the point labeled T = v(C) is the v coordinate where the tangent from the origin touches the curve.
Consider then the expressions

∆1 =
T

max(v), for S ≥ 0

∆2 =
Area(ABC)∫ C

0 v(S) dS

where ∆1 and ∆2 both increase as sigmoidicity increases. It can be shown that, for fractional saturation
functions of order n, the following inequality applies

T ≤ n − 1
n
,

while, at least for the cases n = 2, 3, and n = 4 with some qualification, the positive rational function curve
of maximum sigmoidicity is the equation

v =
Sn

1 + Sn

shown in the next graph for the normalized functions x2/(1 + x2), (3/2)x3/(1 + 2x3), and 2x4/(1 + 3x4).
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Substrate inhibition

Characterization of the shapes of rational functions in the first quadrant has been achieved for n ≤ 3, and the
most distinctive feature is the number of turning points [11]. All that can be said is that analysis depends on
the signs and magnitudes of determinants such as

Di =
�����αi αi−1
βi βi−1

�����
leading to the necessary and sufficient condition Dn < 0 for a final turning point, but only the necessary but
not sufficient condition DiDi−1 < 0 for the maximum number.

It is possible to establish a criterion for the maximum steepness of descent from a final maximum, which
is the most commonly encountered type of substrate inhibition, and to present maximal examples for low
degree cases. Unfortunately this is, like sigmoidicity, only possible for n < 4 and, with some reservations for
n = 4. That is because, for n > 4 the number of possible curve shapes due to multiple turning points creates
an intractable situation.

At least for the cases n = 2, 3 and n = 4 with some qualification, the positive rational function curve showing
maximum substrate inhibition is the equation

v =
S

1 + Sn

shown in the next graph for the normalized functions 150x/(1+ x2), 225x/(2+ x3), and 300x/(3+ x4) [12].
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