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This technique is used when there are two corresponding time series, or in fact any series of signals recorded
at a sequence of fixed discrete intervals of time or space etc., and a comparison of the two series is required.

From the main SimFIT menu choose [Statistics], [Time series], then [Auto- and cross-correlation matrices]
and examine the test file g13dmf.tf1 provided which contains the following data.

X Y

-1.490 7.340
-1.620 6.350
5.200 6.960
6.230 8.540
6.210 6.620
5.860 4.970
4.090 4.550
3.180 4.810
2.620 4.750
1.490 4.760
1.170 10.880
0.850 10.010

-0.350 11.620
0.240 10.360
2.440 6.400
2.580 6.240
2.040 7.930
0.400 4.040
2.260 3.730
3.340 5.600
5.090 5.350
5.000 6.810
4.780 8.270
4.110 7.680
3.450 6.650
1.650 6.080
1.290 10.250
4.090 9.140
6.320 17.750
7.500 13.300
3.890 9.630
1.580 6.800
5.210 4.080
5.250 5.060
4.930 4.940
7.380 6.650
5.870 7.940
5.810 10.760
9.680 11.890
9.070 5.850
7.290 9.010
7.840 7.500
7.550 10.020
7.320 10.380
7.970 8.150
7.760 8.370
7.000 10.730
8.350 12.140

Column 1 contains time series X and column 2 contains the corresponding time series Y . As multivariate
time series with more than two variables can be difficult to analyze it is necessary to select any two variables
for pairwise analysis using this technique.
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The next table illustrates the results from analyzing test file g13dmf.tf1 for the first ten lags using the SimFIT
cross-correlation matrices time series options.

Auto- and cross-correlation matrices
Sample size n = 48
Approximate standard deviation = 0.1443
Mean of X = 4.37021
Mean of Y = 7.86750
For lag m = 0: sample X,Y Correlation coefficient r = 0.2493
m = 1 0.7366(***) 0.1743

0.2114 0.5541(***)

m = 2 0.4562(**) 0.0764
0.0693 0.2602

m = 3 0.3795(**) 0.0138
0.0260 -0.0381

m = 4 0.3227(*) 0.1100
0.0933 -0.2357

m = 5 0.3414(*) 0.2694
0.0872 -0.2499

m = 6 0.3634(*) 0.3436(*)
0.1323 -0.2263

m = 7 0.2802 0.4254(**)
0.2069 -0.1283

m = 8 0.2482 0.5217(***)
0.1970 -0.0845

m = 9 0.2400 0.2664
0.2537 0.0745

m = 10 0.1621 -0.0197
0.2667 0.0047

Indicators: p < 0.005(***), p < 0.01(**), p < 0.05(*)
Maximum off-diagonal, m = 8, |C(1, 2) | = 0.5217

In the above two by two matrices ri j the positions have the following meanings at the lags indicated.

r (1, 1): auto-correlation for X
r (2, 2): auto-correlation for Y
r (1, 2): cross-correlation for X with Y (lags in Y )
r (2, 1): cross-correlation for Y with X (lags in X)

The significance levels are indicated if p ≤ 0.05. These indicate significant auto-correlation for X at lags 1
to 6 but for Y only at lag 1, and also significant cross-correlation for r12 at lags 6 to 8.
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Theory

It is assumed that the data are from a multivariate time series or similar set of observations of several variables
at fixed intervals, and it is wished to make pairwise analysis of such observations.

The data must be supplied as two vectors, say X and Y of length n for instance, with X as column 1 of a n by
2 matrix, and Y as column 2.

The routine first calculates the sample means x̄ and ȳ, the sample variances Vx and Vy , and sample correlation
coefficient r . Then, for a selected number of lags m = 1, 2, . . . , k, the auto-correlations and cross-correlations
are output as a sequence of 2 by 2 matrices.

Since 1/
√

n is a rough approximation to the standard errors of these estimates, the approximate significance
for the sample cross-correlations is indicated as in the table using the following labeling scheme.

|r (i, j) | > 3.29/
√

n : ∗ ∗ ∗
|r (i, j) | > 2.58/

√
n : ∗∗

|r (i, j) | > 1.96/
√

n : ∗.

Finally, the off-diagonal i.e., cross-correlation, coefficient with largest absolute value is indicated. If this
value is close to unity it indicates that the series are closely similar, and the value of m at which this occurs
indicates the extent to which the series have to be slid past each other to obtain maximum similarity of
profiles. Usually, the largest value of m selected for analysis would be for k ≤ n/4.

Defining the denominator D as follows

D =

√√
n∑
i=1

(xi − x̄)2

√√
n∑
i=1

(yi − ȳ)2

then the auto-correlations r (1, 1) and r (2, 2), and the cross-correlations r (1, 2) and r (2, 1) as functions of m
are given by

r (1, 1) =
1
D

n−m∑
i=1

(xi − x̄)(xi+m − x̄)

r (1, 2) =
1
D

n−m∑
i=1

(xi − x̄)(yi+m − ȳ)

r (2, 1) =
1
D

n−m∑
i=1

(xi+m − x̄)(yi − ȳ)

r (2, 2) =
1
D

n−m∑
i=1

(yi − ȳ)(yi+m − ȳ)

for m = 1, 2, . . . , k.
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