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Logistic regression is widely used to model experiments with only one of two outcomes such as success
or failure which, unlike the simple method for analysis of binomial proportions, depend on the values of k
covariates x1, x2, . . . , xk , where k ≥ 1.

Example 1: Alcohol and congenital abnormalities

From the main SimFIT menu choose [Statistics], [Generalized linear models], then [Logistic regression], and
examine the default test file logistic.tf3 containing the following data.

x y N s
0.0 48 17066 1
0.5 38 14464 1
1.5 5 788 1
4.0 1 126 1
7.0 1 37 1

These data were taken from a study of the effects of consuming alcoholic drinks on congenital abnormalities
noted in infants after birth.

1. Column 1: x, alcoholic drinks consumed per day by mother

2. Column 2: y, infants born with abnormalities

3. Column 3: N , sample size

4. Column 4: s, weighting factors (s = 1 indicates unweighted analysis)

Logistic regression by was used to fit the GLM model

log[y/(N − y)] ≈ β0 + β1x

which yielded the following parameter estimates, residuals, then observed and estimated frequencies.

Number of parameters = 2, Rank = 2, Number of points = 5, Degrees of freedom = 3
Parameter Value Lower95%cl Upper95%cl Std. error p exp(β1)

Constant -5.95840 -6.32583 -5.59097 0.115454 0.0000
β1 0.31927 -0.08038 0.71889 0.125574 0.0845 * 1.37611

Deviance = 1.96760

Number Y -value Theory Dev-resid. Leverage
1 48 43.9856 0.597220 0.584800
2 38 43.7119 -0.885127 0.476721
3 5 3.27338 0.886968 0.097194
4 1 1.15684 -0.149976 0.246568
5 1 0.87238 0.135174 0.594717

Observed Estimated
0.0028 0.0026
0.0026 0.0030
0.0064 0.0041
0.0079 0.0092
0.0270 0.0236
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Example 2: The symmetrical case with one variable

Logistic regression is frequently used to model the variation in binomial probability p as a simple linear func-
tion of a variable x often without realizing that, because of the necessary symmetry of the logistic function,
this will usually lead to a biased fit.

For instance, consider the data file logistic.tf4 below

5 0 39 1
7 0 30 1
9 11 28 1

11 26 40 1
13 29 30 1
15 20 20 1

and its complement logistic.tf5

5 39 39 1
7 30 30 1
9 17 28 1

11 14 40 1
13 1 30 1
15 0 20 1

simulated by SimFIT using a random choice from an integer uniform distribution for N (20 ≤ N ≤ 40)
followed by a random choice from a binomial distribution for y given N and p(x) which were then fitted as
indicated in the next graph.
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Exact parameters were β0 = −10, β1 = 1 for p(x) and β0 = 10, β1 = −1 for 1 − p(x) and the best fit
parameters are in the next tables.
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Number of parameters = 2, Rank = 2, Number of points = 6, Degrees of freedom = 4
Parameter Value Lower95%cl Upper95%cl Std. error p exp(β1)

Constant -10.2573 -14.5246 -5.98991 1.53699 0.0026
β1 1.01996 0.60551 1.43440 0.14927 0.0024 2.77307

Deviance = 7.07433

Number of parameters = 2, Rank = 2, Number of points = 6, Degrees of freedom = 4
Parameter Value Lower95%cl Upper95%cl Std. error p exp(β1)

Constant 10.2573 5.98391 14.5307 1.53915 0.0026
β1 -1.01996 -1.43498 -0.60494 0.14948 0.0024 0.360610

Deviance = 7.07433

Due to the symmetry of the logistic curves for p and 1 − p about their midpoints x1/2

p =
1

1 + exp(−η)
= 1 − p =

1
1 + exp(η)

=
1
2

so that the mid point requires η = 0, that is x1/2 = −β0/β1.

Moving a horizontal distance λ to either side of the midpoint generates two vertical distances ∆1 and ∆2
which are equal as shown in this next graph.
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This is because
∆1 =

1
1 + exp(−β1λ)

− 1
2
= ∆2 =

1
2
− 1

1 + exp(β1λ).
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Theory

In a situation where the probability of success is a fixed constant p and Y is the number of successes in N
trials (N ≥ 1), then the probability the Y equals any specific value y where 0 ≤ y ≤ N is

P(Y = y) =
(
N
y

)
py (1 − p)N−y

and p can be estimated as p̂ where the estimate, expectation and variance are

p̂ = y/N

E(y) = N p

V (y) = N p(1 − p).

When the binomial parameter is a function of some variables x1, x2, . . . , xk then a functional relationship
must be proposed to model p(x) and this must be fitted to estimate parameters accounting for the variation in
p. It is usual to do this by fitting a generalized linear model (GLM) with assumed binomial error and logistic
link, but the reason for this model is not because it is the correct model but because of the following fact. In
the simple case of one variable x the log odds ratio from fitting a GLM model with y1 at x and y2 at x + 1 can
then be expressed as

log
(

y1

N − y1

)
≈ β0 + β1x

log
(

y2

N − y2

)
≈ β0 + β1(x + 1)

and hence the odds ratio can be estimated as

p̂2/(1 − p̂2)
p̂1/(1 − p̂1)

≈ exp(β1).

From this we could conclude that an increase of one alcoholic drink per day can be estimated to change the
odds ratio for congenital malformation by about 1.376.

It is this seemingly easy method for interpreting the parameter estimates from logistic regression that has
been responsible for the widespread and often uncritical adoption of this technique and its extension into
areas such as

• Including multiple variables

• Analyzing cases with categorical variables.

So, in order to confirm goodness of fit, SimFIT outputs the deviance and deviance residuals defined as follows

For binomial errors: di = 2
{
yi log

(
yi

µ̂i

)
+ (Ni − yi ) log

(
Ni − yi

Ni − µ̂i

)}
Deviance residuals: ri = sign(yi − µ̂i )

√
di

Deviance =
n∑
i=1

di .

where there are n observations and µ̂i = Ni p̂i , and these should always be considered before accepting a fit.
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