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Abstract-There are many programs for fitting nonlinear models to experimental data, and the use of this 
type of software is now widespread. After fitting a model or sequence of models, these programs usually 
calculate x2, run, sign, F and I statistics as an aid to model discrimination and parameter estimation. 
The distribution of such statistics from linear regression is well known, but these random variables do 
not have the stated named distribution after fitting nonlinear models. 

First we describe a set of programs that can be used to study the distribution of these well known test 
statistics from nonlinear regression. Then we present the results from a study of two models that are 
frequently employed in the life-sciences, and summarize our results from more extensive simulations. 
Finally, we explain how these programs can be used to create the appropriate cumulative distribution 
functions, so that exact probability levels can be calculated, given the models of interest, the design points 
and error structure of a data set. 

1. INTRODUCTION 

Frequently experiments are performed where there is 

uncertainty about choosing the correct model from 
a sequence of possible models, and the F-test for 
excess variance is widely used to aid such model 
discrimination (Burguillo et al., 1989). For example, 
it might be important to identify the correct number 
of exponentials generating a drug elimination profile 
(Bardsley et al., 1986), or to pin down the statistically 
significant number of classes of receptors in a ligand 
binding experiment (Bardsley & McGinlay, 1987). 
Then, having selected a model, the x2, run and sign 
tests are often used to estimate goodness of fit, while 

the r-test is generally relied on to assess parameter 
redundancy. These statistical tests are of course exact 
when a linear model is appropriate and the errors are 
uncorrelated and normally distributed with zero 
means and known variances (Draper & Smith, 
1981). The use of these methods in biochemistry 
without including correction terms was introduced by 
Petterson & Pettersson (1970) and Reich (1970), and 
a useful summary is to be found in the book edited 
by Endrenyi (1981). However, in the life sciences, the 
models fitted are seldom linear, the errors are not 
always uncorrelated or even normally distributed and 

* To whom all correspondence should be addressed. 

the variances are never known exactly. Important 
attempts have been made to correct some of these 
test statistics for nonlinearity (Beale, 1960; Bates & 
Watts, 1980; Seber & Wild, 1989). However, in this 
paper we shall describe software that can be used to 
examine any given model and error structure in order 
to make accurate probability statements using the 

classical test statistics. 
The weighting to be used in nonlinear regression 

is problematical and a number of procedures are 
routinely used: 

l The assumption of constant variance. This 
assumes that the variances of the observed re- 

sponses are effectively constant over the 
range of measurement and independent of the 
values of the observed responses. That is, weights 
equal to I are employed and the value of the 
objective function, i.e. the sum of squared re- 
siduals at the solution point, is used to form a 
variance estimate from the whole sample. This is 

the most widely used approach, but it is unlikely 
to be appropriate since, in most cases, the vari- 
ance of measurements is an increasing function of 
the absolute value of the response. 

l The assumption of constant relative error. 
This assumes that the variances of the observed 
responses are proportional to the square of 
the theoretical, i.e. error free responses. So, 
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weights derived from the best fit function are 
used, but this approach leads to serious bias 
if the wrong model is fitted. A variation is 
to use weights calculated from the measured 
response but this leads to uneven weighting 
with noisy data. In addition, both techniques 
tend to lead to unreasonably small variance 
estimates where the measured responses are 
small. 

l Sample replicates are obtained at each design 
point and these are used to provide estimates of 
variances. Unfortunately, such estimates are 
likely to be very unreliable with small numbers of 
replicates, so sometimes a weighting function is 
fitted to smooth out the variance estimates and 
provide a more even weighting. 

Clearly a determined investigator should undertake 
a thorough study of the error structure of the data in 
order to choose the best weighting scheme. However, 
in the laboratory, there are often limitations on the 
number of design points and replicates that can be 
employed. Also, poor reproducibility as a function 
of time is often sufficiently severe as to preclude 
the sort of retrospective repeat measurements 
recommended from considerations of optimal design, 
unless the design explicitly allows for such time 
dependence. 

In this paper we shall describe software that can be 
used to study the relationship between the behaviour 
of test statistics predicted by the linear model and 
the same statistics resulting from nonlinear models 
with known variances, or variances estimated from 
replicates. This software is illustrated by simulations 
of some models, numbers of experimental points, 
number of replicates and types of error chosen to 
cover typical laboratory experiments. 

The statistics predicted by the linear model are a 
sort of ideal, those generated by correct weights are 
the closest that could be achieved by nonlinear 
models, while the difference between known and 
estimated variances explores how many replicates are 
required to achieve statistics close to those for known 
variances. 

In order to describe our programs to study the 
distribution of these widely used test statistics we 
shall use the following nomenclature: 

n = number of distinct design points. 
m = number of replicates at each design 

point, 
N = mn, the total number of obser- 

vations, 
x, = design points, i = I, 2, . , n, 
tv = experimental errors, 

0; = correct variances assuming constant 
relative error, 

sf = variances estimated from sets of 
replicates. 

w,(a) = l/4, the weighting factors using 
exact variances, 

WI(S) = I/#, the weighting factors using 
sample variances, 

v = number of parameters to be esti- 
mated, 

0 = (0,) 02, . , O,), the true parameter 
vector, 

6(a) = parameters estimated using w,(a), 
6(s) = parameters estimated using wi(s), 

_&(x, 0) = an arbitrary model number k 

Y,, = fk (4 1 0) + El, > the measured re- 
sponses with additive random error, 

rilk(o) = ye - fk [xi, 6(n)], residuals from fit- 
ting model-k with weights w,(a), 

riik (s) = yli --fk [x,, O(s)], residuals from fit- 
ting model k with weights IV&), 

B’,SSQk(a) = Z;“=, w,r$(cr), the minimized objec- 
tive function with weights w,(a), 

IVSSQ,(r) = Cy’, w,Y&(s), the minimized objec- 
tive function with weights w,(s). 

This nomenclature will also be extended in obvious 
ways to include such derived statistics as F(s) and 
F(a) for F statistics from fitting hierarchies of models 
with either estimated or known variances, and t(s) 
and t(a) for the r-statistics used for estimating par- 
ameter redundancy. 

2. DATA SIMULATION AND FITTING 

SIMFIT is a set of computer programs written 
by one of us (WGB) for the purpose of data simu- 
lation, nonlinear regression, statistical analysis and 
graph plotting in the life sciences. The original ver- 
sion was a main frame suite relying on the NAG 
library for numerical analysis, but PC versions are 
now available and can be obtained from the author 
on request. 

First of all we shall describe two programs that 
can be used to simulate data, namely MAKDAT and 
ADDERR. Program MAKDAT allows the user to 
choose a model from a library and then generate data 
either between fixed end points of the independent 
variable, or over a range of independent variables 
determined by chosen values for the dependent vari- 
able. Exact data values can then be generated with the 
independent variable in either an arithmetic or geo- 
metric progression, or a special spacing for graph 
plotting in transformed axes can be selected. Program 
ADDERR takes in exact data generated by program 
MAKDAT, then adds errors according to several 
possible error structures; including generating reph- 
cates and adding outhers. In this paper we shall only 
discuss results obtained with data points forming a 
geometric progression. This is the optimal design 
for model discrimination with these types of models 
(Bardsley et al., 1989), in the sense that the prob- 
ability of rejecting a deficient model is higher with 
data points forming a geometric progression than 
it is when the design points are in an arithmetic 
progression. Also, we shall only discuss errors 
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generated according to a normal distribution and 

constant relative error, with no outliers and with 

weights calculated either from the sample replicates 
generated, or else using exact weights. 

SIMFIT has numerous dedicated programs to fit 
specialized models and also contains more advanced 
general-purpose programs to fit models from a 
library. However, in this paper we shall only discuss 
results obtained using the two curve fitting programs 
MMFIT and EXFIT. 

Program MMFIT fits the sequence of sums of 
Michaelis-Menten models: 

to a data set supplied. This procedure is trivial for 

k = 1 but requires much more effort for success when 
fitting higher order cases. To do this, the data are first 

normalized so that 0 < .x ,< I and 0 6~ d 1, in in- 
ternal coordinates in order to stabilize the calcu- 
lations. Then, the initial intercept and slope are 
estimated by fitting a line to the early (first three 
distinct) design points, while the final asymptote is 
estimated by fitting a Michaelis-Menten model to the 
final group (last three distinct) design points. The 
idea is that the sum of V, will be of the same order 
of magnitude as the asymptote, V, , from fitting one 
function, and the K, values will also be of the order 
of the best fit single K,. On account of the initial 

scaling, these should then be of order unity. From 
these estimates. an initial set of possible parameter 
estimates is calculated. then a random search of 
possible parameter windows is carried out to refine 
these estimates and eventually generate a parameter 
scaling vector. The aim of this procedure is to make 
the optimization as well conditioned as possible 
by trying to create a situation where the internal 
parameters and condition number of the internal 
Hessian matrix are of the unity at the solution point. 
Finally a constrained optimization is performed using 
the quasi-Newton method. After curve fitting, the 
covariance matrix is estimated, tables of parameter 
estimates and goodness of fit statistics are produced 
and graphs of residuals and best fit curves are 
displayed. 

Program EXFIT is a similar program, except that 
a modified Gauss-Newton method is used for uncon- 
strained fitting of the sequence of sums of exponential 

functions: 

/i(x) = i ii,exp(-k,.x). 
,=I 

to a data set. 
Our experience with these, and related programs 

that have been used over many years to fit biological 
models, is that fitting models of order k = 1 is trivial, 
fitting models of order k = 2 is very difficult and 
can often give poorly defined parameters, while fit- 
ting models of order k = 3 or more is highly problem- 
atical and seldom justified statistically, except in very 

exceptional cases with very dense, high quality 

data covering a large proportion of the total possible 

response. 
Although we have investigated the distribution of 

test statistics for many models, data spacings and 
error structures, we shall illustrate the use of these 
programs in this paper only for the Michaelis- 
Menten mode1 and exponential models of order 
k = 2. Here, without loss of generality, we only 
need to consider the special case where any two 
parameters can be assigned arbitrarily, corresponding 
to choosing scaling units. So we shall only discuss the 

parameter set with: 

v=4and V,=K,=A,=k,=l, 

while 

V, = A2 = K, = k, = 4. 

For all the data sets simulated, we chose a range of 
geometrically spaced independent variable so that 
0.1 < y < 0.9, then generated numbers from a normal 
distribution with mean and variance given by: 

11, = 0, 

and 

0; = [O.OSf,(x,. @)I*, i = 1,2,. . , n. 

We shall refer to this case as 5% constant relative 

error. Then we generated data files with x, y, c and 
x, y, s as follows. For each of the n distinct values of 
x, we generated m replicates u,, 

t,ZN(pi,af), j=l,2 ,..., m, 

u, =.fk(x,, 0) + t,, j = 1,2, . , m, 

J,, = U,T 

2 u,, 

m,=, 

ST = & t (u, - IT)*. 
I--I 

so that, finally, there were N = mn data values, that 
is, n distinct values of x and m replicates at each of 
these n design points. We shall only discuss the case 
with n = 8 and m = 4 that is, eight geometrically 
spaced distinct values of x and four replicates at each 
fixed x-value, i.e. 32 observations in all. We regard 
this simulated data set as a high-quality set but one 
that could be achieved by a determined investigator. 
For each data set generated with weights calculated 
from the data and with exact weights, we fitted the 
models of order k = 1, k = 2 and k = 3 in sequence 
and recorded all the statistics of interest. 

3. THE CHI-SQUARE TEST 

After fitting a model it is customary to assess the 
goodness of fit of the model to the data by a x’ 
test on the sum of weighted squared residuals at 
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Fig. 1. The distribution of WSSQ(cr) and WSSQ(s). 
An illustration of the program CHISQD. This figure 
demonstrates the sample cumulative distribution functions 
for the weighted sum of squared residuals at the solution 
point and the theoretical x’ distribution function from 
fitting the models of order k = 2 as described in the text. 
The step functions represent 100 simulations, using either 
the exact standard deviation (0) or the sample standard 
deviations (s) from four replicates for weighting. Using 
exact standard deviations gives objective functions that are 
indistinguisable from the theoretical x2 distribution, but 
using sample standard deviations results in values skewed 
to right of the theoretical x’ distribution unless more than 

four replicates are used. 

the solution point. To investigate this statistic 
we used program CHISQD. This program calcu- 

lates 1’ PDFs, CDFs and percentage points, as 
well as doing x2 and Fisher exact tests on contin- 
gency tables. It also takes in a vector of putative 
x2 random variables, orders them, does an inverse 
probability transform using the supposed degrees of 
freedom, then performs a x2 and Kolmogorov- 
Smirnov test on the transforms, and finally plots 
the cumulative step function on top of the reference 
CDF curve. 

The results from a typical simulation are shown 
in Fig. I. For all values of m, the number of repli- 
cates at each design point, the values for FVSSQ(a) 
using exact weighting factors were indistinguish- 
able from x2 variables, whereas WsSQ(.s), using 
sample estimates for calculating weighting factors, 

were biased to the right of the reference ,y2 distri- 
bution. As m increased from 2 to 16 the ratio defined 
by: 

R = w=x?(s) 
WSSQ(a)' 

decreased monotonically towards 1. If the weights 
were estimated from samples with more than 8 
replicates, the distribution of lVSSQ(s) could not be 
differentiated from a x2 distribution, but with fewer 

than 8 replicates at each design point, the WSSQ(s) 
value was systematically greater than the correspond- 
ing lVSSQ(u) value. 

It is difficult to interpret this result analytically 
since the parameters estimated using the different 
weighing schemes were, of course, different, and R 
is a random variable, so that sometimes it can take 
a value less than 1. However we can see why such 
a result can be anticipated when it is remembered 
that, although s2 is an unbiased estimator of u2, 
nevertheless: 

=P(xi-,<m-1) 

>0.5 , 

hence s will more often than not underestimate 6. So 
residuals weighted by s will tend to exceed residuals 
weighted by CJ and usually IVSsQ(s) > l+‘%Q(a) 
will occur and be especially noticeable at small values 
of m. For instance: 

P(x; < 1) = 0.683, 

P(x: < 1) = 0.608, 

P(x; < 1) = 0.571, 

P( x:5 < 1) = 0.549, 

for the values of m = 2, 4, 8, 16 investigated in this 

study. 
In order to obtain an approximate value for the 

ratio R as a function of the number of replicates m, 
we can suppose that the parameter estimates using 
exact weights would not be very different from 
the parameter estimates using sample variances and 
investigate the behaviour of s as a function of m. Now 
(m - l)s~/ai is a x2 variable with m - 1 degrees 
of freedom and the expectation of its reciprocal is 
l/(m - 3) for m > 3 (the expectation does not exist 
for m < 3). Since we have: 
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we might anticipate values for R around 

(m - 1)/k - 3). In fact further analysis of results 
from simulations like those shown in Fig. 1 show that 
he values of R encountered are not so extreme as 
this and actually 9(m - 1)/(9m - 16) is often a much 
better approximation. 

Cumulative distribution functions can be con- 
structed like Fig. 1 for any model and choice of 
design points, replicates and weighting and then used 
to estimate probability levels for WSSQ(s) as a 
goodness of fit statistic. However, in practice such a 
procedure can be very tedious. We conclude that, 
if fewer than 4 replicates are used to calculate weight- 
ing factors, then JVsSQ(s) will be systematically 
skewed to the right of a x2 distribution. If as many 
as 8 replicates are used then this effect becomes 
minimal. In any given case, the value of R is, of 
course, a random variable which will not always 
exceed unity. However, from extensive studies with 
these and other models, including inspecting plots of 
R as a function of m and fitting empirical models, we 
introduce a suggested procedure for correcting the x2 
test statistic. When sample standard deviations for 
weighting are calculated from sets of m replicates at 
each distinct design point, it is not an unreasonable 
rule of thumb to multiply FKS,SQ(s) by a correction 
factor of (9m - 16)/[9(m - l)] before rejecting a fit to 

data by the x2 test. 
This conclusion has been reached by storing values 

of R(m) with (m = 2, m = 4, m = 8, m = 16), for 
various models and designs, and then fitting the 
above theoretical function d(m) = (m - l)/(m - 3) 
and also the empirical function I,+(M) = (m - I)/ 
(m - 16/9). The function $(m) always fits better than 
#(m), and the usual outcome is that the case m = 2 
shows a large discrepancy, the case (m = 4) shows 
that R(m) is converging asymptotically to unity and, 
by the time m = 8, the values of R(m) are indistin- 
guishable from unity. Of course, in any given case, 
R is a random variable and can be greater or less 
than one. However, from these and other studies, we 
suggest that if there are less than four replicates at 
each design point, it is unwise to use sample variances 
for weighting. If there are four or five replicates 
sample variances may be used, and the above correc- 
tion factor applied with care. With six or more 
replicates, it is probably safe to use sample variances 
and dispense with the correction factor. 

4. THE F-TEST 

In order to determine which model in a sequence 
of models gives a satisfactory fit with the smallest 
number of statistically significant parameters, it is 
customary to fit the possible models, then investigate 
the relative magnitudes of the objective functions 
from the model fitting by an F-test, as demonstrated 
for biochemical models by Burguillo er al. (1983), 
Bardsley et al. (1986) and Bardsley & McGinlay 
(1987). 

CAC 19/2-B 

To investigate the distribution of such test statistics 
for excess variance, we wrote a program called 
FTEST. This program calculates PDF, CDF and 
percentage points for the F distribution, given the 
numerator and denominator degrees of freedom. 
Also, it takes a vector of random numbers, performs 
an inverse probability transform using the supposed 
F distribution, then uses the Kolmogorov-Smirnov 
and x2 tests to see if the vector of transforms 
is consistent with a sample from the uniform distri- 
bution on (0, 1). 

To illustrate the use of this program, Figs 2 and 3 
show the results of a typical simulation. Data were 
simulated for the Michaelis-Menten and exponential 
models where the correct model had k = 2, then the 
data were fitted with the models with k = 1, k = 2 
then k = 3 in sequence and the following test statistics 

F(211) Distribution from the 2-site MM Model 

F(2/1) Distribution from the 2-Exponential Model 

0 50 100 150 200 

F 

Fig. 2. The distribution of I*(u) and F(s). An illustration of 
the use of program FTEST. This figure demonstrates the 
sample cumulative distribution functions for the F-statistics 
and the theoretical F-distribution function, from fitting the 
models of order k = 1 then k = 2 as described in the text. 
The step functions represent 100 simulations, using either 
the exact standard deviation (a) or the sample standard 
deviations (2) from four replicates for weighting. The 
test statistics are skewed to the right of the theoretical F 
distribution, reflecting the substantial improvement in good- 
ness of fit when the correct model is fitted after the deficient 

model. 
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F(W2) Distribution from the 2-site MM Model 
k = 1 were fitted to data generated by order k = 2. 

From Fig. 3 it can be seen that the test statistics were 
heavily skewed to the left of the appropriate F 

distribution. This reflects the large number of times 
when fitting the overdetermined models with k = 3 

gave no improvement in fit to the correct model with 
k = 2. The conclusion must be that this test is very 
useful in differentiating models of order 1 from 2 

when order 1 or 2 is the correct model, but that 
differentiating models of order 3 from order 2 is 
unlikely to be successful. If the F-test indicates that 
a model with k = 1 should be rejected in favour of the 
corresponding model with k = 2 this result should be 
taken seriously. It should not, however, be expected 
that this test can be used to differentiate models with 
k = 3 from those with k = 2 unless the data are very 
extensive and accurate. 
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Fig. 3. The distribution of F(u) and F(s). An illustration of 
the use of program FTEST. This figure shows the sample 
cumulative distribution functions for the F statistics and 
theoretical F distribution function, from fitting models of 
order k = 2 then k = 3 as described in the text. The step 
functions represent 100 simulations, using either the exact 
standard deviation (u) (step function closest to the smooth 
curve), or the sample standard deviations (s) from four 
replicates for weighting. The test statistics were substantially 
smaller than the theoretical F distribution, reflecting the 
large number of times that fitting the overdetermined model 
with redundant parameters gave no appreciable improve- 

ment in goodness of fit. 

were accumulated: 

F(2,1)(o)= [wssQ,(a)- w=Qz(~)lP 
w=Qz(c~)lU'- 4) ’ 

F(3,2)(s) = [@‘=Q2@) - w=Q3@)1/2 

WSSQ,(s)lW - 6) ’ 

The results from this investigation are very clear. 
From Fig. 2 it is evident that the test statistics 
were heavily biased to the right of the reference 
distribution, correctly reflecting the excess variance 
from fitting the deficient models when models with 

5. THE RUN AND SIGN TESTS 

There are three nonparametric tests that can be 
applied to residuals from curve fitting which only use 

the sign of the residuals, not their magnitude. These 
are the sign test, the run test given the total number 
of residuals and the run test given the number of 
positive and negative signs. Before dealing with these 
tests, we first point out that the null hypothesis is 
usually that the order of signs is random, in that 
successive errors will be distributed above and below 
the true model due to the normal distribution of 
errors, and that this order will not change too 
dramatically if the best fit parameters are close to the 
true ones. Of course correlations induced by the 
parameter estimation will mean that the sign pattern 
in the sequence of residuals will not be the same as 

the sign pattern in the sequence of errors: the re- 
siduals will not be normally distributed even though 
the errors are. A more serious problem arises when 
replicates are obtained, or when functions of several 
variables are fitted. This is because the natural order 
that exists when single design points are used and 
residuals are ordered according to the increasing 
magnitude of the independent variable no longer 
applies. For example, by rearranging the order of 
measurements within sets of replicates, different run 
patterns can be produced. We have to suppose that, 
when replicates exist, the order within the replicates 
is maintained, say in the sequence in which the 
replicates were originally measured. The alternative is 
to do the tests on means only, with concomitant loss 
of power. With functions of several variables, run 
tests only make sense if the sequence of residuals is 
in some logical order, such as the order in time of the 
original measurements. 

If N numbers are uncorrelated and the probability 
of either sign is 0.5, then the number of positive 
values N, and negative values No (so that N = 
N, + No) are binomially distributed with parameters 
N and p = 0.5, where p is the binomial probability 
parameter. Consider now the distribution of runs of 
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like sign amongst these N signed numbers. There is 
certainly at least one run, which leaves (N - 1) 
possible positions for the start of the next run. In 

other words, there remain (N - 1) places where the 
next run can start and, at each place, either sign is 
equally probable. It follows that, if there are r runs 
of like signs amongst the N signed numbers, then the 
random variable (r - 1) is binomially distributed 
with parameters (N - 1) and p = 0.5. So we can 
easily calculate the conditional probabilities: 

P(runs < rlN) = P(runs - 1 < r - 1IN - I), 

using the incomplete /?-function. However, the distri- 
bution of signs, and this particular conditional run 
probability are not always very useful in practice for 
analysing goodness of fit. This is because these par- 
ticular tests have low power, being based only on the 
binomial distribution. So it is often preferable to use 
the conditional probability P(runs < r\N, and No), 
which involves more searching assumptions, and is 

the run test usually employed for residuals analysis. 
Tables are available for this purpose (Swed and 
Eisenhart, 1943) but we wrote a program called 
RSTEST to calculate the exact probability levels for 
the sign and both of the conditional run test statistics. 
Program RSTEST can be used to analyze any type 
of run and sign data, but the numerical routines 
developed for this program are also used by all 
the SIMFIT curve fitting programs after fitting has 
been completed, as part of the analysis of residuals. 
Program RSTEST also performs the runs up and 
runs down test for randomness, which tests for 
correlations in large sets of random numbers, as well 

as the KolmogorovvSmirnov one and two sample 
tests and the Mann-Whitney U-test. 

Now the sign and run tests just described are not 
exact, since the residuals will be correlated even 

though the errors may not be correlated. It is, of 
course, easy to simulate results for the sign test and 
the run test conditional upon N. However, it is very 
difficult to simulate the run test conditional upon N, 
and No due to the large number of possible partitions 
of N into components N, and N,. Nevertheless, if it 
can be shown that the distribution of signs is indistin- 
guishable from a binomial distribution, and the dis- 
tribution of (r - I) given (N - 1) is indistinguishable 
from a binomial distribution, then it follows that 
the distribution of runs given N, and No follow 
the distribution calculated by Swed and Eisenart 
(1943) which is a convolution of these binomial 
distributions. 

Program BINOMIAL was written to study such a 
distribution of runs and signs. This program calcu- 
lates probabilities, cumulative probabilities, binomial 
coefficients, percentage points and binomial par- 
ameter estimates, with exact confidence limits from 
the F distribution and with quadratic confidence 
limits using the normal approximation. It also takes 
in samples and performs x2 tests using selected bino- 
mial parameters, or binomial parameters estimated 
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Fig. 4. The distribution of signs and runs. An illustration of 
the use of program BINOMIAL. This figure demonstrates 
the sample distribution functions for the sign and run 
statistics and the theoretical distribution function, from 
fitting the models of order k = 2. The histograms compare 
the results of simulation with the corresponding theoretical 
binomial distribution. It is clear that the distribution of signs 
cannot be differentiated from the theoretical distribution, 
However the number of runs tended to be larger than the 
theoretical distribution, reflecting the increase in frequency 
of runs due to correlations resulting from parameter esti- 

mation, as discussed in the text. 

from the samples. Typical results are shown in Fig. 4. 
We have found that the distribution of signs is 
generally indistinguishable from a binomial distri- 

bution, and the parameter confidence limits usually 
include 0.5, but the sample variance systematically 
underestimates the true variance. The distribution 
of (r - 1) was consistently skewed to the right of 
the theoretical binomial distribution, but could not 
be differentiated from a binomial distribution with 
parameters (N - 1) and J?, where the binomial par- 
ameter was estimated from the sample. Of course, 
the binomial parameter p was systematically over- 
estimated, especially when the number of replicates 
was small. 

It is easy to see how correlations induce this type 
of effect. Suppose that there are just 2 measurements, 
then the possible error patterns are + +, + - , - + , 
-- each with probability 0.25, so that we can have 
either 1 or 2 runs of like signs, each with probability 
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0.5. However, after curve fitting, the residuals pat- 
terns would be + - or - +, each with probabiiity 
0.5, leading to precisely 2 runs. 

Weighted Residuals from the P-site MM Model 

In addition to studying the pattern of runs using 
program BINOMIAL, we also used program 
NORMAL, which calculates PDF, CDF and per- 
centage points for the normal distribution, does a 
ShapirwWilks test for a normal distribution, plots 
normal scores, does an inverse probability trans- 
form and tests the transforms for a uniform (0, 1) 
distribution using the Kolmogorov-Smirnov and 
x2 tests with parameters known or estimated from 
samples. 

0.00 
-2.40 -1.60 -0.60 0.00 0.60 1.60 2.40 

From simulations we have concluded that when 
there are models of order k = 1, k = 2 or k = 3 and 
only two replicates per design point, i.e. m = 2, it is 
usually possible to detect that the residuals weighted 
by bi or si are not normally distributed. However, 
when there are four or more replicates per design 
point, the weighted residuals could not be distin- 
guished from a random sample taken from the stan- 
dard normal distribution, as illustrated in Fig. 5. 

Weighted Residuals 

Parameter VI from the l-site MM Model 

Another use for program NORMAL is also illus- 
trated in Fig. 5. According to linear theory, the 
parameters from a regression should be normally 
distributed, and this result is supposed to hold 
asymptotically in the nonlinear case. An example 
of a rather complicated regression problem where 
this approximation was found to hold is described 
by Bardsley et al. (1992). The fit of the sample 
cumulative distribution for the estimated parameters 
to a normal distribution was poor in general for 
parameters with estimated weighting and m = 2, but 
was reasonably good with four or more replicates. 
With noisy data and less well defined parameter 
spacing, the goodness of fit to a normal distribution 
rapidly deteriorates. 
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VI 
Fig. 5. Weighted residuals and parameter estimates. An 
illustration of the use of program NORMAL. This figure 
demonstrates the sample distribution function for a set of 
weighted residuals using the exact standard deviations (u) 
and sample standard deviations based on four replicates 
(s) for weighting. The theoretical unit normal distribution 
shown is the theoretical cumulative distribution function. 
This figure also shows a typical distribution of parameter 
estimates, in this case the parameter V, from fitting a model 
of order k = 2. If the number of replicates falls below four 
or the number of estimated parameters exceeds four, the 

6. THE r-TEST fit to a theoretical normal distribution deteriorates. 

When a model has been fitted to some data it is 
often important to estimate the reliability of the 
parameter estimates, and the r-test is frequently used 
as a test for such parameter redundancy. To perform 
this test, the Jacobian at the solution point is typically 
used to construct an estimate for the asymptotic 
variance/covariance matrix, then the square root 
of the diagonal elements of this matrix are taken 
as parameter standard errors. For example, if it is 
wished to test whether a particular parameter esti- 
mate is significantly different from a fixed value the 
following statistic would be calculated: 

divided by the estimated parameter standard error, 
when a two tailed t-test would be appropriate. 

t = fixed value - parameter estimate 

estimated parameter standard error’ 

To investigate the distribution of this test statistic 
we wrote a program called TTEST. This program 
calculates PDF, CDF and percentage points for 
the t-distribution, given the number of degrees of 
freedom, and also does the variance ratio test and 
paired and unpaired r-tests on samples. It also takes 
in a vector of random numbers, performs an inverse 
probability transform on the numbers using the 
r-distribution with the appropriate degrees of free- 
dom, then tests the transforms for consistency with a 
uniform distribution on (0, 1) using the Kolmogorov- 
Smirnov and x2 tests. 

and compared to the t distribution with N - v de- The results of a typical simulation will be clear 
grees of freedom. Usually, to test whether a par- from Fig. 6. In general, we have found that when 
ameter is significantly different from zero, the fixed the number of replicates m is at least 4 and the 
value is set to zero, so that the statistic calculated is model fitted has only two or three parameters, then 
simply the absolute value of the parameter estimate the statistics cannot be differentiated from a t distri- 
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Fig. 6. Distribution of t(o) and t(s). An illustration of the 
use of program TTEST. This figure demonstrates the sample 
distribution function for a set of t-statistics using the exact 
standard deviations (u) and sample standard deviations 
based on four replicates (s) for weighting, and the theoreti- 
cal f distribution. The sample statistics were calculated by 
subtracting the parameter estimate from the known exact 
parameter value, then dividing by the estimated parameter 

standard error. 

bution with the appropriate degrees of freedom. 
However, when models have four or more parameters 
the distribution of the test statistics has a much 
greater variance than the t distribution. 

7. CONCLUSIONS 

We have described the following programs from 

the SIMFIT package: 

l MAKDAT: make data using a library of models 
l ADDERR: add errors to exact data to simulate 

experiments 
l MMFIT: fit a sequence of sums of 

Michaelis-Menten models 
l EXFIT: fit a sequence of sums of exponential 

models 
l CHISQD: x2 distribution and tests 
l RSTEST: run, sign and other nonparametric 

tests 
l BINOMIAL: binomial distribution and tests 
l NORMAL: normal distribution and tests 

l FTEST: F-distribution and tests 
l TTEST: t-distribution and tests 

These programs have been in routine use for many 
years, as mainframe programs for simulation studies 
and analyzing data, and they are now freely available 
for PC users. In this paper we have attempted to 
summarize our experience by presenting an analysis 
of two well-known tests cases, differentiating two 
binding sites from one, and confirming the need for 
two exponential terms. However, we believe that the 
findings are of more general applicability. The use of 

these programs in numerous simulation and fitting 
studies has led us to the following conclusions. 

l When models with two or three parameters are 
fitted, there are few computational problems and 
the statistical tests for model discrimination and 
goodness of fit are quite useful. With more than 
four parameters, serious problems are encoun- 
tered in curve fitting and also the test statistics 

become much less reliable. 
l If more than four replicates are obtained at each 

distinct design point and these are used to calcu- 
late standard errors for weighting, the resulting 
test statistics have a distribution that is similar to 
that when exact weights are used. In other words, 
if only three or four replicates are available, then 

it is probably unwise to use these to calculate 
weights unless smoothing is used. If there are 
rather more than four replicates at each distinct 
design point, the difference between using exact 
weights and weights calculated from the samples 
will be small, and so there seems little point in 

smoothing. 
l The 1’ test statistic for goodness of fit will tend 

to be skewed to the right of a 1’ distribution 
if four or fewer replicates are used to calculate 
weights. and a correction formula has been 
suggested to compensate for this effect before 
rejecting a fit by the 1’ test. 

l The F-test for excess variance seems to be very 
reliable in differentiating models of order k = 2 
from those with k = 1 when k = 2 is the correct 
model. However, there are serious computational 
difficulties fitting the cases k > 2 and the F-test is 
not likely to be able to differentiate k = 2 from 
k = 3 when k = 3 is the correct model. 

l The sign test and run test given the total number 
of residuals are not always useful, but the run test 
conditional upon the number of positive and 
negative residuals seems to be quite reliable. The 
complications arising when simulating this test 
and when there are replicates or functions of 
several variables have been considered. 

l Although the weighted residuals from regression 
are not actually normally distributed, it will not 
often be possible to detect such deviations from 
normality with experimental data. 

l The t-test for parameter redundancy behaves 
much like the F-test for excess variance and 
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is only useful with low order models (k < 2), 
where the parameter estimates will tend to be 
distributed similarly to the appropriate normal 
distribution. 

In addition to their general use in assessing good- 
ness of fit, these programs can be used in sensitivity 
studies to estimate probability levels for statistics 
from specific regression problems, using simulation as 
now described. If the models, number of distinct 
design points, number of replicates and error struc- 
ture are assumed, then cumulative distribution func- 
tions can be constructed as we have shown in 
this paper. From these, the approximate probability 
levels for any given test statistic can then be obtained 
by reading off the probability level from a sample 
cumulative distribution function. This can also be 
done in a more sophisticated and convenient manner, 
e.g. by spline smoothing and inverse prediction. 
The SIMFITT package also has a spline smoothing 
program called CALCURVE which can be used for 
just such purposes. The data is fitted by adjusting 
spline knot density until an adequate representation 
has been achieved, then the spline coefficients can 
be stored for recall or used directly to calculate the 
approximate inverse function numerically. 
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